Machine learning algorithms have become the key components in many big data applications. However, the full potential of machine learning is still far from being realized because using machine learning algorithms is hard, especially on distributed platforms such as Hadoop and Spark. The key barriers come from not only the implementation of the algorithms themselves but also the processing for applying them to real applications which often involve multiple steps and different algorithms. Our platform Easy Machine Learning presents a general-purpose dataflow-based system for easing the process of applying machine learning algorithms to real-world tasks. In the system, a learning task is formulated as a directed acyclic graph (DAG) in which each node represents an operation (e.g. a machine learning algorithm), and each edge represents the flow of the data from one node to its descendants.
Features
- Documentation available
- Examples available
- Users could right click on the green output port of finished executing node to preview the output data
- The users can upload their own algorithm packages and data sets for creating their own tasks or shared with other users
- We apply an online service for you to experience our system