Run ML/AI or any type of workload with optimal performance and infrastructure cost. OptScale allows ML teams to multiply the number of ML/AI experiments running in parallel while efficiently managing and minimizing costs associated with cloud and infrastructure resources. OptScale MLOps capabilities include ML model leaderboards, performance bottleneck identification and optimization, bulk run of ML/AI experiments, experiment tracking, and more. The solution enables ML/AI engineers to run automated experiments based on datasets and hyperparameter conditions within the defined infrastructure budget. Certified FinOps solution with the best cloud cost optimization engine, providing rightsizing recommendations, Reserved Instances/Savings Plans, and dozens of other optimization scenarios. With OptScale, users get complete cloud resource usage transparency, anomaly detection, and extensive functionality to avoid budget overruns.

Features

  • MLOps capabilities
  • Documentation available
  • FinOps adoption
  • Examples available
  • ML/AI task profiling and optimization
  • PaaS and SaaS instrumentation and profiling
  • ML/AI experiment tracking

Project Samples

Project Activity

See All Activity >

License

Apache License V2.0

Follow OptScale

OptScale Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of OptScale!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Programming Language

Python

Related Categories

Python Container Management Software

Registered

2024-04-01