Neural Network Libraries for BSD

Browse free open source Neural Network Libraries and projects for BSD below. Use the toggles on the left to filter open source Neural Network Libraries by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 69 This Week
    Last Update:
    See Project
  • 2
    SVoice (Speech Voice Separation)

    SVoice (Speech Voice Separation)

    We provide a PyTorch implementation of the paper Voice Separation

    SVoice is a PyTorch-based implementation of Facebook Research’s study on speaker voice separation as described in the paper “Voice Separation with an Unknown Number of Multiple Speakers.” This project presents a deep learning framework capable of separating mixed audio sequences where several people speak simultaneously, without prior knowledge of how many speakers are present. The model employs gated neural networks with recurrent processing blocks that disentangle voices over multiple computational steps, while maintaining speaker consistency across output channels. Separate models are trained for different speaker counts, and the largest-capacity model dynamically determines the actual number of speakers in a mixture. The repository includes all necessary scripts for training, dataset preparation, distributed training, evaluation, and audio separation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    The Neural Process Family

    The Neural Process Family

    This repository contains notebook implementations

    Neural Processes (NPs) is a collection of interactive Jupyter/Colab notebook implementations developed by Google DeepMind, showcasing three foundational probabilistic machine learning models: Conditional Neural Processes (CNPs), Neural Processes (NPs), and Attentive Neural Processes (ANPs). These models combine the strengths of neural networks and stochastic processes, allowing for flexible function approximation with uncertainty estimation. They can learn distributions over functions from data and efficiently make predictions at new inputs with calibrated uncertainty — making them useful for few-shot learning, Bayesian regression, and meta-learning. Each notebook includes theoretical explanations, key building blocks, and executable code that runs directly in Google Colab, requiring no local setup. Implementations rely only on standard dependencies such as NumPy, TensorFlow, and Matplotlib, and provide visualizations of model performance.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage. With configuration-driven experiments, you can sweep hyperparameters, run ablations, and log results at scale. The goal is to turn GAN experimentation into a disciplined, repeatable process rather than a patchwork of scripts. It also provides baselines strong enough to serve as starting points for new ideas without re-implementing the world.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Fast Artificial Neural Network Library is a free open source neural network library, which implements multilayer artificial neural networks in C with support for both fully connected and sparsely connected networks. Cross-platform execution in both fixed and floating point are supported. It includes a framework for easy handling of training data sets. It is easy to use, versatile, well documented, and fast. Bindings to more than 15 programming languages are available. An easy to read introduction article and a reference manual accompanies the library with examples and recommendations on how to use the library. Several graphical user interfaces are also available for the library.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 6
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    FairChem

    FairChem

    FAIR Chemistry's library of machine learning methods for chemistry

    FAIRChem is a unified library for machine learning in chemistry and materials, consolidating data, pretrained models, demos, and application code into a single, versioned toolkit. Version 2 modernizes the stack with a cleaner core package and breaking changes relative to V1, focusing on simpler installs and a stable API surface for production and research. The centerpiece models (e.g., UMA variants) plug directly into the ASE ecosystem via a FAIRChem calculator, so users can run relaxations, molecular dynamics, spin-state energetics, and surface catalysis workflows with the same pretrained network by switching a task flag. Tasks span heterogeneous domains—catalysis (OC20-style), inorganic materials (OMat), molecules (OMol), MOFs (ODAC), and molecular crystals (OMC)—allowing one model family to serve many simulations. The README provides quick paths for pulling models (e.g., via Hugging Face access), then running energy/force predictions on GPU or CPU.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit. With a single specification, you can compute NNGP and NTK kernels, perform exact GP inference, and study training dynamics analytically for infinitely wide networks. The library closely mirrors JAX’s stax API while extending it to return a kernel_fn alongside init_fn and apply_fn, enabling drop-in workflows for kernel computation. Kernel evaluation is highly optimized for speed and memory, and computations can be automatically distributed across accelerators with near-linear scaling.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    TensorNetwork is a high-level library for building and contracting tensor networks—graphical factorizations of large tensors that underpin many algorithms in physics and machine learning. It abstracts networks as nodes and edges, then compiles efficient contraction orders across multiple numeric backends so users can focus on model structure rather than index bookkeeping. Common network families (MPS/TT, PEPS, MERA, tree networks) are expressed with concise APIs that encourage experimentation and comparison. The library provides automatic path finding and cost estimation, exposing when contractions will explode in memory and suggesting better orders. Because it supports backends such as NumPy, TensorFlow, PyTorch, and JAX, the same model can run on CPUs, GPUs, or TPUs with minimal code changes. Tutorials and visualization helpers make it easier to understand how network topology affects expressive power and computational cost.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 10
    Video Nonlocal Net

    Video Nonlocal Net

    Non-local Neural Networks for Video Classification

    video-nonlocal-net implements Non-local Neural Networks for video understanding, adding long-range dependency modeling to 2D/3D ConvNet backbones. Non-local blocks compute attention-like responses across all positions in space-time, allowing a feature at one frame and location to aggregate information from distant frames and regions. This formulation improves action recognition and spatiotemporal reasoning, especially for classes requiring context beyond short temporal windows. The repo provides training recipes and models for standard datasets, as well as ablations that show how many non-local blocks to insert and at which stages. Efficient implementations keep memory and compute manageable so the blocks can be added without rewriting the entire backbone. The result is a practical, drop-in mechanism for upgrading purely local video models into context-aware networks with strong benchmark performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    DeepDream

    DeepDream

    This repository contains IPython Notebook with sample code

    DeepDream is a small, educational repository that accompanies Google’s original “Inceptionism” blog post by providing a runnable IPython/Jupyter notebook that demonstrates how to “dream” through a convolutional neural network. The notebook shows how to take a trained vision model and iteratively amplify patterns the network detects, producing the hallmark surreal, hallucinatory visuals. It walks through loading a pretrained network, selecting layers and channels to maximize, computing gradients with respect to the input image, and applying multi-scale “octave” processing to reveal fine and coarse patterns. The code is intentionally compact and exploratory, encouraging users to tweak layers, step sizes, and scales to influence the aesthetic. Although minimal, it illustrates important concepts like feature visualization, activation maximization, and the effect of different receptive fields on the final image.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed runtime manages synchronization, load balancing, and mixed-precision computation to maximize throughput while minimizing communication bottlenecks. CoreNet integrates tightly with Apple’s proprietary ML stack and hardware, serving as the foundation for research in computer vision, language models, and multimodal systems within Apple AI. The framework includes monitoring tools, fault tolerance mechanisms, and efficient checkpointing for massive training runs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    NeuMan

    NeuMan

    Neural Human Radiance Field from a Single Video (ECCV 2022)

    NeuMan is a reference implementation that reconstructs both an animatable human and its background scene from a single monocular video using neural radiance fields. It supports novel view and novel pose synthesis, enabling compositional results like transferring reconstructed humans into new scenes. The pipeline separates human/body and environment, learning consistent geometry and appearance to support animation. Demos showcase sequences such as dance and handshake, and the code provides guidance for running evaluations and rendering. As a research release, it serves both as a baseline and as a starting point for work on human-centric NeRFs. The emphasis is on practical reconstruction quality from minimal capture setups. Compositional outputs to blend humans and backgrounds. Novel view and novel pose synthesis from learned radiance fields.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    ResNeXt

    ResNeXt

    Implementation of a classification framework

    ResNeXt is a deep neural network architecture for image classification built on the idea of aggregated residual transformations. Instead of simply increasing depth or width, ResNeXt introduces a new dimension called cardinality, which refers to the number of parallel transformation paths (i.e. the number of “branches”) that are aggregated together. Each branch is a small transformation (e.g. bottleneck block) and their outputs are summed—this enables richer representation without excessive parameter blowup. The design is modular and homogeneous, making it relatively easy to scale (by tuning cardinality, width, depth) and adopt in existing residual frameworks. The official repository offers a Torch (Lua) implementation with code for training, evaluation, and pretrained models on ImageNet. In practice, ResNeXt models often outperform standard ResNet models of comparable complexity.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Feed-forward neural network for python
    ffnet is a fast and easy-to-use feed-forward neural network training solution for python. Many nice features are implemented: arbitrary network connectivity, automatic data normalization, very efficient training tools, network export to fortran code. Now ffnet has also a GUI called ffnetui.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    Lightweight backpropagation neural network in C. Intended for programs that need a simple neural network and do not want needlessly complex neural network libraries. Includes example application that trains a network to recognize handwritten digits.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 17
    It's an object-oriented library written in C++ for creating arbitrary kind of neural networks. The user can use the classes provided to create neural network with arbitrary topology and mixed type of neurons. It's very easy add custom neurons.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    TIKAPP is becoming a collection of tools for simulation of neural networks. The first available part is an ANSI-C++ library with support for backpropation networks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    nn-utility is a neural network library for C++ and Java. Its aim is to simplify the tedious programming of neural networks, while allowing programmers to have maximum flexibility in terms of defining functions and network topology.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    The subject of this project is development of the Intrusion Detection System (IDS) with Artificial Neural Network (ANN). This model will allow the implementation of a system capable to analyze and to identify possible intrusions, based on the method of an
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Amygdala is a C++ spiking neural network library. It includes several neuron models, SMP support and facilities for developing SNNs with genetic algorithms. Support for running Amygdala neural networks on workstation clusters and MPPs is also under way
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Program to performing the complete cycle of neural networks analysis: preparing data, choosing neural network (CasCor, MP, LogRegression, PNN), learning of network, monitoring learning state, ROC-analysis, optimization of network parameters using GA.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    NNFpp (Neural Network Framework plus plus) is a C++ porting of the NNF library. The library is a complete and portable C++ class with specified functions for using neural networks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Neural network library for C++ applications in Windows and Linux. Multi-Layer perceptron, radial-basis function networks and Hopfield networks are supported. You can interface this with Matlab's Neural Network Toolbox using the Matlab Extensions Pack
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Do you want a neural network OO class? With documentation? Do not go further... You found it! you have here a complete library of different neural network in an OO encapsulation. Starting from adaline, back propagation, Kohonen
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.