Search Results for "recurrent neural network c++"

Showing 198 open source projects for "recurrent neural network c++"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices. Predicting stock prices...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    waifu2x ncnn Vulkan

    waifu2x ncnn Vulkan

    waifu2x converter ncnn version, run fast GPU with vulkan

    ncnn implementation of waifu2x converter. Runs fast on Intel/AMD/Nvidia/Apple-Silicon with Vulkan API. waifu2x-ncnn-vulkan uses ncnn project as the universal neural network inference framework.
    Downloads: 68 This Week
    Last Update:
    See Project
  • 4
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 27 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    pytorch-cpp

    pytorch-cpp

    C++ Implementation of PyTorch Tutorials for Everyone

    C++ Implementation of PyTorch Tutorials for Everyone. This repository provides tutorial code in C++ for deep learning researchers to learn PyTorch (i.e. Section 1 to 3) Interactive Tutorials are currently running on LibTorch Nightly Version. Libtorch only supports 64bit Windows and an x64 generator needs to be specified. Create all required script module files for pre-learned models/weights during the build. Requires installed python3 with PyTorch and torch-vision. You can choose to only build...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 7
    oneDNN

    oneDNN

    oneAPI Deep Neural Network Library (oneDNN)

    This software was previously known as Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) and Deep Neural Network Library (DNNL). oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform performance library of basic building blocks for deep learning applications. oneDNN is part of oneAPI. The library is optimized for Intel(R) Architecture Processors, Intel Processor Graphics and Xe Architecture graphics. oneDNN has experimental support for the following...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    SentencePiece

    SentencePiece

    Unsupervised text tokenizer for Neural Network-based text generation

    SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabulary size is predetermined prior to the neural model training. SentencePiece implements subword units (e.g., byte-pair-encoding (BPE) [Sennrich et al.]) and unigram language model [Kudo.]) with the extension of direct training from raw sentences. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific pre...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Hasktorch

    Hasktorch

    Tensors and neural networks in Haskell

    Hasktorch is a powerful Haskell library for tensor computation and neural network modeling, built on top of libtorch (the backend of PyTorch). It brings differentiable programming, automatic differentiation, and efficient tensor operations into Haskell’s strongly typed functional paradigm. This project is in active development, so expect changes to the library API as it evolves. We would like to invite new users to join our Hasktorch discord space for questions and discussions. Contributions/PR...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ONNX is an open format built to represent machine learning models. ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ... of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) Fast Server written in pure C++, a single codebase for Cloud, Desktop & Embedded.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    MIVisionX

    MIVisionX

    Set of comprehensive computer vision & machine intelligence libraries

    MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized open-source implementation of the Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyping and deployment of optimized computer vision and machine learning inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    XNNPACK

    XNNPACK

    High-efficiency floating-point neural network inference operators

    XNNPACK is a highly optimized, low-level neural network inference library developed by Google for accelerating deep learning workloads across a variety of hardware architectures, including ARM, x86, WebAssembly, and RISC-V. Rather than serving as a standalone ML framework, XNNPACK provides high-performance computational primitives—such as convolutions, pooling, activation functions, and arithmetic operations—that are integrated into higher-level frameworks like TensorFlow Lite, PyTorch Mobile...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Build your own X

    Build your own X

    Master programming by recreating your favorite technologies

    build-your-own-x is a massive, community-curated roadmap of hands-on tutorials that teach you to re-implement complex systems from scratch—things like databases, compilers, operating systems, interpreters, web servers, neural networks, regex engines, and more. Rather than offering abstract theory, it organizes step-by-step guides by topic and by programming language, so you can pick a project that fits your stack and skill level. The focus is on demystifying internals: you don’t just use a tool...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    AIQuant

    AIQuant

    AI-powered platform for quantitative trading

    ai_quant_trade is an AI-powered, one-stop open-source platform for quantitative trading—ranging from learning and simulation to actual trading. It consolidates stock trading knowledge, strategy examples, factor discovery, traditional rules-based strategies, various machine learning and deep learning methods, reinforcement learning, graph neural networks, high-frequency trading, C++ deployment, and Jupyter Notebook examples for practical hands-on use. Stock trading strategies: large models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SOD

    SOD

    An Embedded Computer Vision & Machine Learning Library

    .... SOD implements state-of-the-art computer vision algorithms found to be mandatory in real-world application areas. Sobel operator, Otsu's binarization and over 100 image/frame processing & analysis interfaces. Designed for computational efficiency and with a strong focus on real-time applications. SOD includes a comprehensive set of both classic and state-of-the-art deep-neural networks with their pre-trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Chess Engines for Android

    Chess Engines for Android

    Portable UCI- and XBoard-compatible chess engines.

    ... (e. g. link to the source code). Chess engines are located in the libs directory and are available for arm64-v8.2a-dotprod, arm64-v8a, armeabi-v7a, x86 and x86_64 based devices. If a chess engine supports NNUE (Neural Network Updated Efficiently) technology and the network is not embedded in the binary, you will find the missing network file in the networks directory. Requires a chess app that has full access to the internal memory (e.g. Chess for Android 6.2.1 or DroidFish).
    Leader badge
    Downloads: 371 This Week
    Last Update:
    See Project
  • 18
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    NeuronetExperimenter

    NeuronetExperimenter simulates the activity of biological neurons

    The NeuronetExperimenter software can be used to quickly simulate large sets of biological neurons arranged with arbitrary network connectivity. The software makes it easy to investigate the behaviors of large, complex, neural networks, especially when starting from XPPAUT models (http://www.math.pitt.edu/~bard/xpp/xpp.html). The software is very flexible and allows users to develop multiple neuron types with different constituent differential equations describing their behavior. Any...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    dibnn

    dibnn

    Drop In the Bucket Neural Networks

    One more lightweight neural network in C.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 22
    Darknet YOLO

    Darknet YOLO

    Real-Time Object Detection for Windows and Linux

    This is YOLO-v3 and v2 for Windows and Linux. YOLO (You only look once) is a state-of-the-art, real-time object detection system of Darknet, an open source neural network framework in C. YOLO is extremely fast and accurate. It uses a single neural network to divide a full image into regions, and then predicts bounding boxes and probabilities for each region. This project is a fork of the original Darknet project.
    Downloads: 49 This Week
    Last Update:
    See Project
  • 23
    Darknet

    Darknet

    Convolutional Neural Networks

    Darknet is an open source neural network framework written in C and CUDA, developed by Joseph Redmon. It is best known as the original implementation of the YOLO (You Only Look Once) real-time object detection system. Darknet is lightweight, fast, and easy to compile, making it suitable for research and production use. The repository provides pre-trained models, configuration files, and tools for training custom object detection models. With GPU acceleration via CUDA and OpenCV integration...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 24
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    G2SConverter

    G2SConverter

    Convert models from GoldSource engine to Source engine with AI

    .... After the Upscaling procedure, the texture is deblured using the Scale-recurrent Network for Deep Image Deblurring. An example of a processed texture is shown in the following image (parameters used: scaling-factor = 4 and deblur iterations = 4) besides upscaling and debluring the utility also generates normal maps for each texture. This is implemented using the DeepBump by HugoTiny model. Examples of normal maps are shown in the following images.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.