Search Results for "matlab code for image classification using svm"

Showing 38 open source projects for "matlab code for image classification using svm"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    MatlabMachine

    MatlabMachine

    Machine learning algorithms

    Matlab-Machine is a comprehensive collection of machine learning algorithms implemented in MATLAB. It includes both basic and advanced techniques for classification, regression, clustering, and dimensionality reduction. Designed for educational and research purposes, the repository provides clear implementations that help users understand core ML concepts.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    Discover pre-trained models for deep learning in MATLAB. Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    Weak-to-Strong

    Weak-to-Strong

    Implements weak-to-strong learning for training stronger ML models

    Weak-to-Strong is an OpenAI research codebase that implements the concept of weak-to-strong generalization, as described in the accompanying paper. The project provides tools for training larger “strong” models using labels or guidance generated by smaller “weak” models. Its core functionality focuses on binary classification tasks, with support for fine-tuning pretrained language models and experimenting with different loss functions, including confidence-based auxiliary losses. The...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    ...ML.NET has been designed as an extensible platform so that you can consume other popular ML frameworks (TensorFlow, ONNX, Infer.NET, and more) and have access to even more machine learning scenarios, like image classification, object detection, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Exposure Correction

    Exposure Correction

    Learning multi-scale deep model correcting over- and under- exposed

    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    ReViMS

    ReViMS

    ReViMS, a 3D volume rendering tool for light-sheet/confocal microscopy

    Reconstruction and Visualization from Multiple Sections (ReViMS), an open-source, user-friendly software for automatically estimating volume and several other features of 3D multicellular aggregates (i.e., cancer spheroid, zebrafish, fruit fly). ReViMS requires a z-stack of 2D binary masks, obtained by segmenting a sequence of fluorescent images acquired by scanning the aggregate along the z axis, using a confocal or a light-sheet fluorescent microscope. It provides a number of tools for: (a) segmenting z-stacks of fluorescence images; (b) reconstructing the 3D surface of the aggregates and estimating several features (including the volume). ReViMS is written in MATLAB (The MathWorks, Inc., Massachusetts, USA). It is an open-source tool and the source code is freely available at: http://sourceforge.net/p/revims Requirements: MATLAB R2017b and Image Processing Toolbox 10.1 or later versions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 10
    Exclusively Dark Image Dataset

    Exclusively Dark Image Dataset

    ExDARK dataset is the largest collection of low-light images

    The Exclusively Dark (ExDARK) dataset is one of the largest curated collections of real-world low-light images designed to support research in computer vision tasks under challenging lighting conditions. It contains 7,363 images captured across ten different low-light scenarios, ranging from extremely dark environments to twilight. Each image is annotated with both image-level labels and object-level bounding boxes for 12 object categories, making it suitable for detection and classification...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    dibnn

    dibnn

    Drop In the Bucket Neural Networks

    One more lightweight neural network in C.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    GeoTools, the Java GIS toolkit

    GeoTools, the Java GIS toolkit

    Toolkit for working with and mapping geospatial data

    GeoTools is an open source (LGPL) Java code library which provides standards compliant methods for the manipulation of geospatial data. GeoTools is an Open Source Geospatial Foundation project. The GeoTools library data structures are based on Open Geospatial Consortium (OGC) specifications.
    Leader badge
    Downloads: 210 This Week
    Last Update:
    See Project
  • 13
    Detic

    Detic

    Code release for "Detecting Twenty-thousand Classes

    Detic (“Detecting Twenty-thousand Classes using Image-level Supervision”) is a large-vocabulary object detector that scales beyond fully annotated datasets by leveraging image-level labels. It decouples localization from classification, training a strong box localizer on standard detection data while learning classifiers from weak supervision and large image-tag corpora. A shared region proposal backbone feeds a flexible classification head that can expand to tens of thousands of categories...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DocWire SDK

    DocWire SDK

    Award-winning modern data processing SDK in C++20

    DocWire SDK, a standout C++20AI driven data processing tool, has received award from SourceForge and strong backing from Microsoft. It handles nearly 100 file types, empowering efficient text extraction, web data extraction, and document analysis. For businesses, the shift to DocWire SDK signifies a leap forward. It promises comprehensive document format support and the ability to extract valuable insights from email boxes, databases, and websites using cutting-edge AI. DocWire SDK aims to...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ReViSP

    ReViSP

    ReViSP, a 3D volume rendering MATLAB tool for multicellular spheroids

    Reconstruction and Visualization from a Single Projection (ReViSP) tool: a 3D volume rendering method we developed to reconstruct the 3D shape of multicellular spheroids, besides estimating the volume by counting the voxels (3D pixels) fully included in the 3D surface. ReViSP is written in MATLAB (The MathWorks, Inc., Massachusetts, USA) and the source code is freely provided. Requirements for running ReViSP from the source code: MATLAB 2020a and Image Processing Toolbox 11.1 or later versions. Please, when using this software, cite these articles: (a) F. Piccinini, et al., Cancer multicellular spheroids: Volume assessment from a single 2D projection. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DnCNN

    DnCNN

    Beyond a Gaussian Denoiser: Residual Learning of Deep CNN

    ...The repository includes training code (using MatConvNet / MATLAB), demo scripts, pretrained models, and evaluation routines. Single model handling multiple noise levels.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    CAM

    CAM

    Class Activation Mapping

    This repository implements Class Activation Mapping (CAM), a technique to expose the implicit attention of convolutional neural networks by generating heatmaps that highlight the most discriminative image regions influencing a network’s class prediction. The method involves modifying a CNN model slightly (e.g., using global average pooling before the final layer) to produce a weighted combination of feature maps as the class activation map. Integration with existing CNNs (with light...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    CNN for Image Retrieval
    cnn-for-image-retrieval is a research-oriented project that demonstrates the use of convolutional neural networks (CNNs) for image retrieval tasks. The repository provides implementations of CNN-based methods to extract feature representations from images and use them for similarity-based retrieval. It focuses on applying deep learning techniques to improve upon traditional handcrafted descriptors by learning features directly from data. The code includes training and evaluation scripts that...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    ANDTool

    ANDTool

    Analysis Nuclei DAB (AND) Tool

    ...ANDTool is written in MATLAB (The MathWorks, Inc., Massachusetts, USA) and the source code and standalone versions are here available for download. USER MANUAL: see the specific PDF available in the Files section. REQUIREMENTS: MATLAB R2017b and Image Processing Toolbox 10.1 or later versions. MAIN CONTACT: Filippo Piccinini (E-mail: filippo.piccinini85@gmail.com)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Turi Create

    Turi Create

    Simplifies the development of custom machine learning models

    Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code. Turi Create supports macOS 10.12+, Linux (with glibc 2.10+), Windows 10 (via WSL). Turi Create requires Python 2.7, 3.5, 3.6, 3.7, 3.8. ...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 22
    Deep Learning for Medical Applications

    Deep Learning for Medical Applications

    Deep Learning Papers on Medical Image Analysis

    Deep-Learning-for-Medical-Applications is a repository that compiles deep learning methods, code implementations, and examples applied to medical imaging and healthcare data. The project addresses domain-specific challenges like segmentation, classification, detection, and multimodal data (e.g. MRI, CT, X-ray) using state-of-the-art architectures (e.g. U-Net, ResNet, GAN variants) tailored to medical constraints (small datasets, annotation costs, class imbalance). It includes Jupyter...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ConvNet Burden

    ConvNet Burden

    Memory consumption and FLOP count estimates for convnets

    convnet-burden is a MATLAB toolbox / script collection estimating computational cost (FLOPs) and memory consumption of various convolutional neural network architectures. It lets users compute approximate burdens (in FLOPs, memory) for standard image classification CNN models (e.g. ResNet, VGG) based on network definitions. The tool helps researchers compare the computational efficiency of architectures or quantify resource needs. Estimation of memory consumption (e.g. feature map sizes,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    JSiteDescriptor

    Binding site descriptor generation for SVM based classification.

    A set of java programs that extract coordinate and chemical information from PDB files. The binding site regions are extracted using grid based scheme. For binding site, spatio-chemical descriptor is generated based on PocketMatch algorithm of Dr. Kalidas (author of this project too).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Brain imaging software produced by the Brain Research Imaging Centre of The University of Edinburgh.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next