Alternatives to scikit-learn

Compare scikit-learn alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to scikit-learn in 2025. Compare features, ratings, user reviews, pricing, and more from scikit-learn competitors and alternatives in order to make an informed decision for your business.

  • 1
    NovaFori

    NovaFori

    NovaFori

    We are a cutting-edge technology company based in London and Malaga, with a decade of experience in combining business analysis, marketplace design, development and data science. Our technology supports B2B and B2C clients in Europe, North America and Asia, with over $11 billion GMV transacted through our platforms since inception. Our auction and trading platform, powered by data science, is deployed across multiple industries, including commodities, financial services, logistics and procurement. The technology platform is flexible, scalable and modular, designed with a B2C user experience and complex product attributes of the B2B world in mind. We leverage data by using machine learning algorithms to understand what's happening in the market, predict future trends and optimise marketplace performance.
  • 2
    Gensim

    Gensim

    Radim Řehůřek

    Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
  • 3
    ML.NET

    ML.NET

    Microsoft

    ML.NET is a free, open source, and cross-platform machine learning framework designed for .NET developers to build custom machine learning models using C# or F# without leaving the .NET ecosystem. It supports various machine learning tasks, including classification, regression, clustering, anomaly detection, and recommendation systems. ML.NET integrates with other popular ML frameworks like TensorFlow and ONNX, enabling additional scenarios such as image classification and object detection. It offers tools like Model Builder and the ML.NET CLI, which utilize Automated Machine Learning (AutoML) to simplify the process of building, training, and deploying high-quality models. These tools automatically explore different algorithms and settings to find the best-performing model for a given scenario.
  • 4
    MLlib

    MLlib

    Apache Software Foundation

    ​Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem. ​
  • 5
    Keepsake

    Keepsake

    Replicate

    Keepsake is an open-source Python library designed to provide version control for machine learning experiments and models. It enables users to automatically track code, hyperparameters, training data, model weights, metrics, and Python dependencies, ensuring that all aspects of the machine learning workflow are recorded and reproducible. Keepsake integrates seamlessly with existing workflows by requiring minimal code additions, allowing users to continue training as usual while Keepsake saves code and weights to Amazon S3 or Google Cloud Storage. This facilitates the retrieval of code and weights from any checkpoint, aiding in re-training or model deployment. Keepsake supports various machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, by saving files and dictionaries in a straightforward manner. It also offers features such as experiment comparison, enabling users to analyze differences in parameters, metrics, and dependencies across experiments.
  • 6
    Dask

    Dask

    Dask

    Dask is open source and freely available. It is developed in coordination with other community projects like NumPy, pandas, and scikit-learn. Dask uses existing Python APIs and data structures to make it easy to switch between NumPy, pandas, scikit-learn to their Dask-powered equivalents. Dask's schedulers scale to thousand-node clusters and its algorithms have been tested on some of the largest supercomputers in the world. But you don't need a massive cluster to get started. Dask ships with schedulers designed for use on personal machines. Many people use Dask today to scale computations on their laptop, using multiple cores for computation and their disk for excess storage. Dask exposes lower-level APIs letting you build custom systems for in-house applications. This helps open source leaders parallelize their own packages and helps business leaders scale custom business logic.
  • 7
    Datatron

    Datatron

    Datatron

    Datatron offers tools and features built from scratch, specifically to make machine learning in production work for you. Most teams discover that there’s more to just deploying models, which is already a very manual and time-consuming task. Datatron offers single model governance and management platform for all of your ML, AI, and Data Science models in production. We help you automate, optimize, and accelerate your ML models to ensure that they are running smoothly and efficiently in production. Data Scientists use a variety of frameworks to build the best models. We support anything you’d build a model with ( e.g. TensorFlow, H2O, Scikit-Learn, and SAS ). Explore models built and uploaded by your data science team, all from one centralized repository. Create a scalable model deployment in just a few clicks. Deploy models built using any language or framework. Make better decisions based on your model performance.
  • 8
    IBM Watson Studio
    Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
  • 9
    Bokeh

    Bokeh

    Bokeh

    Bokeh makes it simple to create common plots, but also can handle custom or specialized use-cases. Plots, dashboards, and apps can be published in web pages or Jupyter notebooks. Python has an incredible ecosystem of powerful analytics tools: NumPy, Scipy, Pandas, Dask, Scikit-Learn, OpenCV, and more. With a wide array of widgets, plot tools, and UI events that can trigger real Python callbacks, the Bokeh server is the bridge that lets you connect these tools to rich, interactive visualizations in the browser. Microscopium is a project maintained by researchers at Monash University. It allows researchers to discover new gene or drug functions by exploring large image datasets with Bokeh’s interactive tools. Panel is a tool for polished data presentation that utilizes the Bokeh server. It is created and supported by Anaconda. Panel makes it simple to create custom interactive web apps and dashboards by connecting user-defined widgets to plots, images, tables, or text.
  • 10
    Lucidworks Fusion
    Fusion transforms your siloed data into personalized insights unique to each user. Lucidworks Fusion lets customers easily deploy AI-powered data discovery and search applications in a modern, containerized, cloud-native architecture. Data scientists interact with those applications by leveraging existing machine learning models and workflows. Or they can quickly create and deploy new models using popular tools like Python ML, TensorFlow, scikit-learn, and spaCy. Reduce the effort and risk of managing deployments of Fusion in the cloud. Lucidworks has modernized Fusion with a cloud-native microservices architecture orchestrated by Kubernetes. Fusion allows customers to dynamically manage application resources as utilization ebbs and flows, reduce the effort of deploying and upgrading Fusion, and avoid unscheduled downtime and performance degradation. Fusion includes native support for Python machine learning models. Plug your custom ML models into Fusion.
  • 11
    IntelliHub

    IntelliHub

    Spotflock

    We work closely with businesses to find out what are the common issues preventing companies from realising benefits. We design to open up opportunities that were previously not viable using conventional approaches Corporations -big and small, require an AI platform with complete empowerment and ownership. Tackle data privacy and adopt to AI platforms at a sustainable cost. Enhance the efficiency of businesses and augment the work humans do. We apply AI to gain control over repetitive or dangerous tasks and bypass human intervention, thereby expediting tasks with creativity and empathy. Machine Learning helps to give predictive capabilities to applications with ease. You can build classification and regression models. It can also do clustering and visualize different clusters. It supports multiple ML libraries like Weka, Scikit-Learn, H2O and Tensorflow. It includes around 22 different algorithms for building classification, regression and clustering models.
  • 12
    Apache Mahout

    Apache Mahout

    Apache Software Foundation

    Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark.
  • 13
    Paradise

    Paradise

    Geophysical Insights

    Paradise uses robust, unsupervised machine learning and supervised deep learning technologies to accelerate interpretation and generate greater insights from the data. Generate attributes to extract meaningful geological information and as input into machine learning analysis. Identify attributes having the highest variance and contribution among a set of attributes in a geologic setting, Display the neural classes (topology) and their associated colors resulting from Stratigraphic Analysis that indicate the distribution of facies. Detect faults automatically with deep learning and machine learning processes. Compare machine learning classification results and other seismic attributes to traditional good logs. Generate geometric and spectral decomposition attributes on a cluster of compute nodes in a fraction of the time on a single machine.
  • 14
    Azure Databricks
    Unlock insights from all your data and build artificial intelligence (AI) solutions with Azure Databricks, set up your Apache Spark™ environment in minutes, autoscale, and collaborate on shared projects in an interactive workspace. Azure Databricks supports Python, Scala, R, Java, and SQL, as well as data science frameworks and libraries including TensorFlow, PyTorch, and scikit-learn. Azure Databricks provides the latest versions of Apache Spark and allows you to seamlessly integrate with open source libraries. Spin up clusters and build quickly in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. Take advantage of autoscaling and auto-termination to improve total cost of ownership (TCO).
  • 15
    BigML

    BigML

    BigML

    Machine Learning made beautifully simple for everyone. Take your business to the next level with the leading Machine Learning platform. Start making data-driven decisions today! No more wildly expensive or cumbersome solutions. Machine Learning that simply works. BigML provides a selection of robustly-engineered Machine Learning algorithms proven to solve real world problems by applying a single, standardized framework across your company. Avoid dependencies on many disparate libraries that increase complexity, maintenance costs, and technical debt in your projects. BigML facilitates unlimited predictive applications across industries including aerospace, automotive, energy, entertainment, financial services, food, healthcare, IoT, pharmaceutical, transportation, telecommunications, and more. Supervised Learning: classification and regression (trees, ensembles, linear regressions, logistic regressions, deepnets), and time series forecasting.
    Starting Price: $30 per user per month
  • 16
    Oracle Machine Learning
    Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface.
  • 17
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 18
    neptune.ai

    neptune.ai

    neptune.ai

    Neptune.ai is a machine learning operations (MLOps) platform designed to streamline the tracking, organizing, and sharing of experiments and model-building processes. It provides a comprehensive environment for data scientists and machine learning engineers to log, visualize, and compare model training runs, datasets, hyperparameters, and metrics in real-time. Neptune.ai integrates easily with popular machine learning libraries, enabling teams to efficiently manage both research and production workflows. With features that support collaboration, versioning, and experiment reproducibility, Neptune.ai enhances productivity and helps ensure that machine learning projects are transparent and well-documented across their lifecycle.
    Starting Price: $49 per month
  • 19
    MLBox

    MLBox

    Axel ARONIO DE ROMBLAY

    MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset.
  • 20
    Flower

    Flower

    Flower

    Flower is an open source federated learning framework designed to simplify the development and deployment of machine learning models across decentralized data sources. It enables training on data located on devices or servers without transferring the data itself, thereby enhancing privacy and reducing bandwidth usage. Flower supports a wide range of machine learning frameworks, including PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and is compatible with various platforms and cloud services like AWS, GCP, and Azure. It offers flexibility through customizable strategies and supports both horizontal and vertical federated learning scenarios. Flower's architecture allows for scalable experiments, with the capability to handle workloads involving tens of millions of clients. It also provides built-in support for privacy-preserving techniques like differential privacy and secure aggregation.
  • 21
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 22
    Apache PredictionIO
    Apache PredictionIO® is an open-source machine learning server built on top of a state-of-the-art open-source stack for developers and data scientists to create predictive engines for any machine learning task. It lets you quickly build and deploy an engine as a web service on production with customizable templates. Respond to dynamic queries in real-time once deployed as a web service, evaluate and tune multiple engine variants systematically, and unify data from multiple platforms in batch or in real-time for comprehensive predictive analytics. Speed up machine learning modeling with systematic processes and pre-built evaluation measures, support machine learning and data processing libraries such as Spark MLLib and OpenNLP. Implement your own machine learning models and seamlessly incorporate them into your engine. Simplify data infrastructure management. Apache PredictionIO® can be installed as a full machine learning stack, bundled with Apache Spark, MLlib, HBase, Akka HTTP, etc.
  • 23
    Torch

    Torch

    Torch

    Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. The goal of Torch is to have maximum flexibility and speed in building your scientific algorithms while making the process extremely simple. Torch comes with a large ecosystem of community-driven packages in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking among others, and builds on top of the Lua community. At the heart of Torch are the popular neural network and optimization libraries which are simple to use, while having maximum flexibility in implementing complex neural network topologies. You can build arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in an efficient manner.
  • 24
    Swivl

    Swivl

    Education Bot, Inc

    swivl is simplifying AI training. In general, data scientists typically spend 80% of their time on non-value-added tasks such as finding, cleaning, and annotating data. Our no-code SaaS platform helps teams outsource these data annotation tasks to a vetted network of data annotators to close the feedback loop in a cost-effective way. This involves the action of training, testing, and deploying machine learning models with an emphasis on natural language processing, audio, and generalized data categorization.
    Starting Price: $149/mo/user
  • 25
    scikit-image

    scikit-image

    scikit-image

    scikit-image is a collection of algorithms for image processing. It is available free of charge and free of restriction. We pride ourselves on high-quality, peer-reviewed code, written by an active community of volunteers. scikit-image provides a versatile set of image processing routines in Python. This library is developed by its community, and contributions are most welcome! scikit-image aims to be the reference library for scientific image analysis in Python. We accomplish this by being easy to use and install. We are careful in taking on new dependencies, and sometimes cull existing ones, or make them optional. All functions in our API have thorough docstrings clarifying expected inputs and outputs. Conceptually identical arguments have the same name and position in a function signature. Test coverage is close to 100% and code is reviewed by at least two core developers before being included in the library.
  • 26
    Alibaba Cloud Machine Learning Platform for AI
    An end-to-end platform that provides various machine learning algorithms to meet your data mining and analysis requirements. Machine Learning Platform for AI provides end-to-end machine learning services, including data processing, feature engineering, model training, model prediction, and model evaluation. Machine learning platform for AI combines all of these services to make AI more accessible than ever. Machine Learning Platform for AI provides a visualized web interface allowing you to create experiments by dragging and dropping different components to the canvas. Machine learning modeling is a simple, step-by-step procedure, improving efficiencies and reducing costs when creating an experiment. Machine Learning Platform for AI provides more than one hundred algorithm components, covering such scenarios as regression, classification, clustering, text analysis, finance, and time series.
    Starting Price: $1.872 per hour
  • 27
    Folio3

    Folio3

    Folio3 Software

    Folio3 machine learning company has a team of dedicated Data Scientists and Consultants that have delivered end-to-end projects related to machine learning, natural language processing, computer vision and predictive analysis. Artificial Intelligence and Machine Learning algorithms have enabled companies to utilize highly-customized solutions equipped with advanced Machine Learning capabilities. Computer vision technology has scaled up visual data analysis, introduced new image- based functionalities and transformed the way companies from various verticals utilize visual content. Predictive analytics solutions offered by Folio3 produce effective and fast results, enabling you to identify opportunities and anomalies in your business processes and strategy.
  • 28
    Google Colab
    Google Colab is a free, hosted Jupyter Notebook service that provides cloud-based environments for machine learning, data science, and educational purposes. It offers no-setup, easy access to computational resources such as GPUs and TPUs, making it ideal for users working with data-intensive projects. Colab allows users to run Python code in an interactive, notebook-style environment, share and collaborate on projects, and access extensive pre-built resources for efficient experimentation and learning. Colab also now offers a Data Science Agent automating analysis, from understanding the data to delivering insights in a working Colab notebook (Sequences shortened. Results for illustrative purposes. Data Science Agent may make mistakes.)
  • 29
    Anaconda

    Anaconda

    Anaconda

    Empowering the enterprise to do real data science at speed and scale with a full-featured machine learning platform. Spend less time managing tools and infrastructure, so you can focus on building machine learning applications that move your business forward. Anaconda Enterprise takes the headache out of ML operations, puts open-source innovation at your fingertips, and provides the foundation for serious data science and machine learning production without locking you into specific models, templates, or workflows. Software developers and data scientists can work together with AE to build, test, debug, and deploy models using their preferred languages and tools. AE provides access to both notebooks and IDEs so developers and data scientists can work together more efficiently. They can also choose from example projects and preconfigured projects. AE projects are automatically containerized so they can be moved between environments with ease.
  • 30
    Google Cloud Datalab
    An easy-to-use interactive tool for data exploration, analysis, visualization, and machine learning. Cloud Datalab is a powerful interactive tool created to explore, analyze, transform, and visualize data and build machine learning models on Google Cloud Platform. It runs on Compute Engine and connects to multiple cloud services easily so you can focus on your data science tasks. Cloud Datalab is built on Jupyter (formerly IPython), which boasts a thriving ecosystem of modules and a robust knowledge base. Cloud Datalab enables analysis of your data on BigQuery, AI Platform, Compute Engine, and Cloud Storage using Python, SQL, and JavaScript (for BigQuery user-defined functions). Whether you're analyzing megabytes or terabytes, Cloud Datalab has you covered. Query terabytes of data in BigQuery, run local analysis on sampled data, and run training jobs on terabytes of data in AI Platform seamlessly.
  • 31
    UnionML

    UnionML

    Union

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. ‍ Data science, ML engineering, and MLOps practitioners can all gather around UnionML apps as a way of defining a single source of truth about your ML system’s behavior.
  • 32
    SANCARE

    SANCARE

    SANCARE

    SANCARE is a start-up specializing in Machine Learning applied to hospital data. We collaborate with some of the best scientists in the field. SANCARE provides Medical Information Departments with an ergonomic and intuitive interface, promoting rapid adoption. The user has access to all the documents that constitute the computerized patient record. A true production tool, each step of the coding process is traced for external checks. Machine learning makes it possible to develop powerful predictive models from large volumes of data, and to take into account the notion of context, which is not possible for rule engines or semantic analysis engines. It is therefore possible to automate complex decision-making processes or to detect weak signals ignored by humans. The SANCARE software machine learning engine is based on a probabilistic approach. It learns over a large amount of examples to predict the right codes, without any indication.
  • 33
    JADBio AutoML
    JADBio is a state-of-the-art automated Machine Learning Platform without the need for coding. With its breakthrough algorithms it can solve open problems in machine learning. Anybody can use it and perform a sophisticated and correct machine learning analysis even if they do not know any math, statistics, or coding. It is purpose-built for life science data and particularly molecular data. This means that it can deal with the idiosyncrasies of molecular data such as very low sample size and very high number of measured quantities that could reach to millions. Life scientists need it to understand what are the features and biomarkers that are predictive and important, what is their role, and get intuition about the molecular mechanisms involved. Knowledge discovery is often more important than a predictive model. So, JADBio focuses on feature selection and its interpretation.
  • 34
    TruEra

    TruEra

    TruEra

    A machine learning monitoring solution that helps you easily oversee and troubleshoot high model volumes. With explainability accuracy that’s unparalleled and unique analyses that are not available anywhere else, data scientists avoid false alarms and dead ends, addressing critical problems quickly and effectively. Your machine learning models stay optimized, so that your business is optimized. TruEra’s solution is based on an explainability engine that, due to years of dedicated research and development, is significantly more accurate than current tools. TruEra’s enterprise-class AI explainability technology is without peer. The core diagnostic engine is based on six years of research at Carnegie Mellon University and dramatically outperforms competitors. The platform quickly performs sophisticated sensitivity analysis that enables data scientists, business users, and risk and compliance teams to understand exactly how and why a model makes predictions.
  • 35
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 36
    PolyAnalyst

    PolyAnalyst

    Megaputer Intelligence

    PolyAnalyst is a data analysis software used by large organizations across several industries (Insurance, Manufacturing, Finance, etc.). Some of its most notable features and capabilities include its use of a visual composer for complex data analysis modeling rather than coding/programming. It couples structured and poly-structured forms of data for unified analysis (ie multiple-choice questions and open-ended responses) and it can process text data in over 16+ different languages. PolyAnalyst has many features that meet comprehensive data analysis needs, such as loading data, cleansing and preparing data for analysis, deploying machine learning and supervised analysis techniques, and building reports that non-analysts can use to uncover insights.
  • 37
    Kraken

    Kraken

    Big Squid

    Kraken is for everyone from analysts to data scientists. Built to be the easiest-to-use, no-code automated machine learning platform. The Kraken no-code automated machine learning (AutoML) platform simplifies and automates data science tasks like data prep, data cleaning, algorithm selection, model training, and model deployment. Kraken was built with analysts and engineers in mind. If you've done data analysis before, you're ready! Kraken's no-code, easy-to-use interface and integrated SONAR© training make it easy to become a citizen data scientist. Advanced features allow data scientists to work faster and more efficiently. Whether you use Excel or flat files for day-to-day reporting or just ad-hoc analysis and exports, drag-and-drop CSV upload and the Amazon S3 connector in Kraken make it easy to start building models with a few clicks. Data Connectors in Kraken allow you to connect to your favorite data warehouse, business intelligence tools, and cloud storage.
    Starting Price: $100 per month
  • 38
    Prodigy

    Prodigy

    Explosion

    Radically efficient machine teaching. An annotation tool powered by active learning. Prodigy is a scriptable annotation tool so efficient that data scientists can do the annotation themselves, enabling a new level of rapid iteration. Today’s transfer learning technologies mean you can train production-quality models with very few examples. With Prodigy you can take full advantage of modern machine learning by adopting a more agile approach to data collection. You'll move faster, be more independent and ship far more successful projects. Prodigy brings together state-of-the-art insights from machine learning and user experience. With its continuous active learning system, you're only asked to annotate examples the model does not already know the answer to. The web application is powerful, extensible and follows modern UX principles. The secret is very simple: it's designed to help you focus on one decision at a time and keep you clicking – like Tinder for data.
    Starting Price: $490 one-time fee
  • 39
    Launchable

    Launchable

    Launchable

    You can have the best developers in the world, but every test is making them slower. 80% of your software tests are pointless. The problem is you don't know which 80%. We find the right 20% using your data so that you can ship faster. We have shrink-wrapped predictive test selection, a machine learning-based approach being used at companies like Facebook so that it can be used by any company. We support multiple languages, test runners, and CI systems. Just bring Git to the table. Launchable uses machine learning to analyze your test failures and source code. It doesn't rely on code syntax analysis. This means it's trivial for Launchable to add support for almost any file-based programming language. It also means we can scale across teams and projects with different languages and tools. Out of the box, we currently support Python, Ruby, Java, JavaScript, Go, C, and C++, and we regularly add support for new languages.
  • 40
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
  • 41
    Scraawl

    Scraawl

    Scraawl

    Scraawl is a suite of data analytics tools designed to empower you to gain more from your data. Whether your problem set focuses on publicly available data, images and video, unstructured text, or all of the above, Scraawl has powerful tools to enhance your analyses. Scraawl leverages state-of-the-art artificial intelligence and machine learning techniques to provide actionable insights through analytics. Our team is a multi-disciplinary group of developers, researchers, and data scientists dedicated to bringing cutting edge analytics to users. Scraawl SocL® is an enterprise-level, easy-to-use, web-based PAI listening and analytics tool. Scraawl SocL® searches, analyzes, and visualizes online conversations and news data, providing a user with a detailed 360-degree analysis.
  • 42
    XLSCOUT

    XLSCOUT

    XLSCOUT

    Comprehensive high-quality IP data for patent analytics. 136 million patents from 100+ countries. Trusted by world-class brands and organizations of all sizes. XLSCOUT engineered data with best-in-class artificial intelligence technologies to develop the most accurate, comprehensive, and intelligent patent & research publication database. Using Natural Language Processing (NLP), Machine Learning (ML), and innovation/scientific principles, XLSCOUT gives you more time and reliable insights to confidently make data-driven strategic decisions. Drafting LLM is a cutting-edge patent application drafting platform that utilizes Large Language Models (LLMs) & Generative AI for drafting top-tier preliminary patent drafts. Novelty Checker LLM swifts through patent and non-patent literature, delivering a comprehensive list of ranked prior art references along with a key feature analysis report.
  • 43
    Orange

    Orange

    University of Ljubljana

    Open source machine learning and data visualization. Build data analysis workflows visually, with a large, diverse toolbox. Perform simple data analysis with clever data visualization. Explore statistical distributions, box plots and scatter plots, or dive deeper with decision trees, hierarchical clustering, heatmaps, MDS and linear projections. Even your multidimensional data can become sensible in 2D, especially with clever attribute ranking and selections. Interactive data exploration for rapid qualitative analysis with clean visualizations. Graphic user interface allows you to focus on exploratory data analysis instead of coding, while clever defaults make fast prototyping of a data analysis workflow extremely easy. Place widgets on the canvas, connect them, load your datasets and harvest the insight! When teaching data mining, we like to illustrate rather than only explain. And Orange is great at that.
  • 44
    Amazon SageMaker Canvas
    Amazon SageMaker Canvas expands access to machine learning (ML) by providing business analysts with a visual interface that allows them to generate accurate ML predictions on their own, without requiring any ML experience or having to write a single line of code. Visual point-and-click interface to connect, prepare, analyze, and explore data for building ML models and generating accurate predictions. Automatically build ML models to run what-if analysis and generate single or bulk predictions with a few clicks. Boost collaboration between business analysts and data scientists by sharing, reviewing, and updating ML models across tools. Import ML models from anywhere and generate predictions directly in Amazon SageMaker Canvas. With Amazon SageMaker Canvas, you can import data from disparate sources, select values you want to predict, automatically prepare and explore data, and quickly and more easily build ML models. You can then analyze models and generate accurate predictions.
  • 45
    Fido

    Fido

    Fido

    Fido is a light-weight, open-source, and highly modular C++ machine learning library. The library is targeted towards embedded electronics and robotics. Fido includes implementations of trainable neural networks, reinforcement learning methods, genetic algorithms, and a full-fledged robotic simulator. Fido also comes packaged with a human-trainable robot control system as described in Truell and Gruenstein. While the simulator is not in the most recent release, it can be found for experimentation on the simulator branch.
  • 46
    SHARK

    SHARK

    SHARK

    SHARK is a fast, modular, feature-rich open-source C++ machine learning library. It provides methods for linear and nonlinear optimization, kernel-based learning algorithms, neural networks, and various other machine learning techniques. It serves as a powerful toolbox for real-world applications as well as research. Shark depends on Boost and CMake. It is compatible with Windows, Solaris, MacOS X, and Linux. Shark is licensed under the permissive GNU Lesser General Public License. Shark provides an excellent trade-off between flexibility and ease-of-use on the one hand, and computational efficiency on the other. Shark offers numerous algorithms from various machine learning and computational intelligence domains in a way that they can be easily combined and extended. Shark comes with a lot of powerful algorithms that are to our best knowledge not implemented in any other library.
  • 47
    ElectrifAi

    ElectrifAi

    ElectrifAi

    Proven commercial value in weeks, for high value use cases across all major verticals. ElectrifAi has the largest library of pre-built machine learning models that seamlessly integrate into existing workflows to provide fast and reliable results. Get our domain expertise through pre-trained, pre-structured, or brand-new models. Building machine learning is risky and time-consuming. ElectrifAi delivers superior, fast and reliable results with over 1,000 ready-to-deploy machine learning models that seamlessly integrate into existing workflows. With comprehensive capabilities to deploy proven ML models, we bring you solutions faster. We make the machine learning models, complete the data ingestion and clean up the data. Our domain experts use your existing data to train the selected model that works best for your use case.
  • 48
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 49
    SquareML

    SquareML

    SquareML

    SquareML is a no-code machine learning platform designed to democratize access to advanced data analytics and predictive modeling, particularly in the healthcare sector. It enables users, regardless of technical expertise, to harness machine learning capabilities without extensive coding knowledge. The platform specializes in data ingestion from multiple sources, including electronic health records, claims databases, medical devices, and health information exchanges. Key features include a no-code data science lifecycle, generative AI models for healthcare, unstructured data conversion, diverse machine learning models for predicting patient outcomes and disease progression, a library of pre-built models and algorithms, and seamless integration with various healthcare data sources. SquareML aims to streamline data processes, enhance diagnostic accuracy, and improve patient care outcomes by providing AI-powered insights.
  • 50
    Kepler

    Kepler

    Stradigi AI

    Leverage Kepler’s Automated Data Science Workflows and remove the need for coding and machine learning experience. Onboard quickly and generate data-driven insights unique to your organization and your data. Receive continuous updates & additional Workflows built by our world-class AI and ML team via our SaaS-based model. Scale AI and accelerate time-to-value with a platform that grows with your business using the team and skills already present within your organization. Address complex business problems with advanced AI and machine learning capabilities without the need for technical ML experience. Leverage state-of-the-art, end-to-end automation, an extensive library of AI algorithms, and the ability to quickly deploy machine learning models. Organizations are using Kepler to augment and automate critical business processes to improve productivity and agility.