Alternatives to Wallaroo.AI
Compare Wallaroo.AI alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Wallaroo.AI in 2025. Compare features, ratings, user reviews, pricing, and more from Wallaroo.AI competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex. -
2
RunPod
RunPod
RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure. -
3
Amazon SageMaker
Amazon
Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers. -
4
CoreWeave
CoreWeave
CoreWeave is a cloud infrastructure provider specializing in GPU-based compute solutions tailored for AI workloads. The platform offers scalable, high-performance GPU clusters that optimize the training and inference of AI models, making it ideal for industries like machine learning, visual effects (VFX), and high-performance computing (HPC). CoreWeave provides flexible storage, networking, and managed services to support AI-driven businesses, with a focus on reliability, cost efficiency, and enterprise-grade security. The platform is used by AI labs, research organizations, and businesses to accelerate their AI innovations. -
5
Amazon EC2 Inf1 Instances
Amazon
Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.Starting Price: $0.228 per hour -
6
NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.Starting Price: Free
-
7
Deep Infra
Deep Infra
Powerful, self-serve machine learning platform where you can turn models into scalable APIs in just a few clicks. Sign up for Deep Infra account using GitHub or log in using GitHub. Choose among hundreds of the most popular ML models. Use a simple rest API to call your model. Deploy models to production faster and cheaper with our serverless GPUs than developing the infrastructure yourself. We have different pricing models depending on the model used. Some of our language models offer per-token pricing. Most other models are billed for inference execution time. With this pricing model, you only pay for what you use. There are no long-term contracts or upfront costs, and you can easily scale up and down as your business needs change. All models run on A100 GPUs, optimized for inference performance and low latency. Our system will automatically scale the model based on your needs.Starting Price: $0.70 per 1M input tokens -
8
CentML
CentML
CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. Focus on your AI products and let our technology take care of optimum performance and lower cost for you. -
9
Replicate
Replicate
Replicate is a platform that enables developers and businesses to run, fine-tune, and deploy machine learning models at scale with minimal effort. It offers an easy-to-use API that allows users to generate images, videos, speech, music, and text using thousands of community-contributed models. Users can fine-tune existing models with their own data to create custom versions tailored to specific tasks. Replicate supports deploying custom models using its open-source tool Cog, which handles packaging, API generation, and scalable cloud deployment. The platform automatically scales compute resources based on demand, charging users only for the compute time they consume. With robust logging, monitoring, and a large model library, Replicate aims to simplify the complexities of production ML infrastructure.Starting Price: Free -
10
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
11
Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
-
12
Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
-
13
VESSL AI
VESSL AI
Build, train, and deploy models faster at scale with fully managed infrastructure, tools, and workflows. Deploy custom AI & LLMs on any infrastructure in seconds and scale inference with ease. Handle your most demanding tasks with batch job scheduling, only paying with per-second billing. Optimize costs with GPU usage, spot instances, and built-in automatic failover. Train with a single command with YAML, simplifying complex infrastructure setups. Automatically scale up workers during high traffic and scale down to zero during inactivity. Deploy cutting-edge models with persistent endpoints in a serverless environment, optimizing resource usage. Monitor system and inference metrics in real-time, including worker count, GPU utilization, latency, and throughput. Efficiently conduct A/B testing by splitting traffic among multiple models for evaluation.Starting Price: $100 + compute/month -
14
GMI Cloud
GMI Cloud
Build your generative AI applications in minutes on GMI GPU Cloud. GMI Cloud is more than bare metal. Train, fine-tune, and infer state-of-the-art models. Our clusters are ready to go with scalable GPU containers and preconfigured popular ML frameworks. Get instant access to the latest GPUs for your AI workloads. Whether you need flexible on-demand GPUs or dedicated private cloud instances, we've got you covered. Maximize GPU resources with our turnkey Kubernetes software. Easily allocate, deploy, and monitor GPUs or nodes with our advanced orchestration tools. Customize and serve models to build AI applications using your data. GMI Cloud lets you deploy any GPU workload quickly and easily, so you can focus on running ML models, not managing infrastructure. Launch pre-configured environments and save time on building container images, installing software, downloading models, and configuring environment variables. Or use your own Docker image to fit your needs.Starting Price: $2.50 per hour -
15
Nebius
Nebius
Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.Starting Price: $2.66/hour -
16
NVIDIA NIM
NVIDIA
Explore the latest optimized AI models, connect AI agents to data with NVIDIA NeMo, and deploy anywhere with NVIDIA NIM microservices. NVIDIA NIM is a set of easy-to-use inference microservices that facilitate the deployment of foundation models across any cloud or data center, ensuring data security and streamlined AI integration. Additionally, NVIDIA AI provides access to the Deep Learning Institute (DLI), offering technical training to gain in-demand skills, hands-on experience, and expert knowledge in AI, data science, and accelerated computing. AI models generate responses and outputs based on complex algorithms and machine learning techniques, and those responses or outputs may be inaccurate, harmful, biased, or indecent. By testing this model, you assume the risk of any harm caused by any response or output of the model. Please do not upload any confidential information or personal data unless expressly permitted. Your use is logged for security purposes. -
17
Neysa Nebula
Neysa
Nebula allows you to deploy and scale your AI projects quickly, easily and cost-efficiently2 on highly robust, on-demand GPU infrastructure. Train and infer your models securely and easily on the Nebula cloud powered by the latest on-demand Nvidia GPUs and create and manage your containerized workloads through Nebula’s user-friendly orchestration layer. Access Nebula’s MLOps and low-code/no-code engines to build and deploy AI use cases for business teams and to deploy AI-powered applications swiftly and seamlessly with little to no coding. Choose between the Nebula containerized AI cloud, your on-prem environment, or any cloud of your choice. Build and scale AI-enabled business use-cases within a matter of weeks, not months, with the Nebula Unify platform.Starting Price: $0.12 per hour -
18
Oblivus
Oblivus
Our infrastructure is equipped to meet your computing requirements, be it one or thousands of GPUs, or one vCPU to tens of thousands of vCPUs, we've got you covered. Our resources are readily available to cater to your needs, whenever you need them. Switching between GPU and CPU instances is a breeze with our platform. You have the flexibility to deploy, modify, and rescale your instances according to your needs, without any hassle. Outstanding machine learning performance without breaking the bank. The latest technology at a significantly lower cost. Cutting-edge GPUs are designed to meet the demands of your workloads. Gain access to computational resources that are tailored to suit the intricacies of your models. Leverage our infrastructure to perform large-scale inference and access necessary libraries with our OblivusAI OS. Unleash the full potential of your gaming experience by utilizing our robust infrastructure to play games in the settings of your choice.Starting Price: $0.29 per hour -
19
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow. -
20
TensorWave
TensorWave
TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc. -
21
Striveworks Chariot
Striveworks
Make AI a trusted part of your business. Build better, deploy faster, and audit easily with the flexibility of a cloud-native platform and the power to deploy anywhere. Easily import models and search cataloged models from across your organization. Save time by annotating data rapidly with model-in-the-loop hinting. Understand the full provenance of your data, models, workflows, and inferences. Deploy models where you need them, including for edge and IoT use cases. Getting valuable insights from your data is not just for data scientists. With Chariot’s low-code interface, meaningful collaboration can take place across teams. Train models rapidly using your organization's production data. Deploy models with one click and monitor models in production at scale. -
22
Seldon
Seldon Technologies
Deploy machine learning models at scale with more accuracy. Turn R&D into ROI with more models into production at scale, faster, with increased accuracy. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Deploy reduces the time to production by providing production grade inference servers optimized for popular ML framework or custom language wrappers to fit your use cases. Seldon Core Enterprise provides access to cutting-edge, globally tested and trusted open source MLOps software with the reassurance of enterprise-level support. Seldon Core Enterprise is for organizations requiring: - Coverage across any number of ML models deployed plus unlimited users - Additional assurances for models in staging and production - Confidence that their ML model deployments are supported and protected. -
23
Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
-
24
Vertex AI Notebooks
Google
Vertex AI Notebooks is a fully managed, scalable solution from Google Cloud that accelerates machine learning (ML) development. It provides a seamless, interactive environment for data scientists and developers to explore data, prototype models, and collaborate in real-time. With integration into Google Cloud’s vast data and ML tools, Vertex AI Notebooks supports rapid prototyping, automated workflows, and deployment, making it easier to scale ML operations. The platform’s support for both Colab Enterprise and Vertex AI Workbench ensures a flexible and secure environment for diverse enterprise needs.Starting Price: $10 per GB -
25
Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
-
26
Together AI
Together AI
Whether prompt engineering, fine-tuning, or training, we are ready to meet your business demands. Easily integrate your new model into your production application using the Together Inference API. With the fastest performance available and elastic scaling, Together AI is built to scale with your needs as you grow. Inspect how models are trained and what data is used to increase accuracy and minimize risks. You own the model you fine-tune, not your cloud provider. Change providers for whatever reason, including price changes. Maintain complete data privacy by storing data locally or in our secure cloud.Starting Price: $0.0001 per 1k tokens -
27
Substrate
Substrate
Substrate is the platform for agentic AI. Elegant abstractions and high-performance components, optimized models, vector database, code interpreter, and model router. Substrate is the only compute engine designed to run multi-step AI workloads. Describe your task by connecting components and let Substrate run it as fast as possible. We analyze your workload as a directed acyclic graph and optimize the graph, for example, merging nodes that can be run in a batch. The Substrate inference engine automatically schedules your workflow graph with optimized parallelism, reducing the complexity of chaining multiple inference APIs. No more async programming, just connect nodes and let Substrate parallelize your workload. Our infrastructure guarantees your entire workload runs in the same cluster, often on the same machine. You won’t spend fractions of a second per task on unnecessary data roundtrips and cross-region HTTP transport.Starting Price: $30 per month -
28
Nscale
Nscale
Nscale is the Hyperscaler engineered for AI, offering high-performance computing optimized for training, fine-tuning, and intensive workloads. From our data centers to our software stack, we are vertically integrated in Europe to provide unparalleled performance, efficiency, and sustainability. Access thousands of GPUs tailored to your requirements using our AI cloud platform. Reduce costs, grow revenue, and run your AI workloads more efficiently on a fully integrated platform. Whether you're using Nscale's built-in AI/ML tools or your own, our platform is designed to simplify the journey from development to production. The Nscale Marketplace offers users access to various AI/ML tools and resources, enabling efficient and scalable model development and deployment. Serverless allows seamless, scalable AI inference without the need to manage infrastructure. It automatically scales to meet demand, ensuring low latency and cost-effective inference for popular generative AI models. -
29
NVIDIA Run:ai
NVIDIA
NVIDIA Run:ai is an enterprise platform designed to optimize AI workloads and orchestrate GPU resources efficiently. It dynamically allocates and manages GPU compute across hybrid, multi-cloud, and on-premises environments, maximizing utilization and scaling AI training and inference. The platform offers centralized AI infrastructure management, enabling seamless resource pooling and workload distribution. Built with an API-first approach, Run:ai integrates with major AI frameworks and machine learning tools to support flexible deployment anywhere. It also features a powerful policy engine for strategic resource governance, reducing manual intervention. With proven results like 10x GPU availability and 5x utilization, NVIDIA Run:ai accelerates AI development cycles and boosts ROI. -
30
Ori GPU Cloud
Ori
Launch GPU-accelerated instances highly configurable to your AI workload & budget. Reserve thousands of GPUs in a next-gen AI data center for training and inference at scale. The AI world is shifting to GPU clouds for building and launching groundbreaking models without the pain of managing infrastructure and scarcity of resources. AI-centric cloud providers outpace traditional hyperscalers on availability, compute costs and scaling GPU utilization to fit complex AI workloads. Ori houses a large pool of various GPU types tailored for different processing needs. This ensures a higher concentration of more powerful GPUs readily available for allocation compared to general-purpose clouds. Ori is able to offer more competitive pricing year-on-year, across on-demand instances or dedicated servers. When compared to per-hour or per-usage pricing of legacy clouds, our GPU compute costs are unequivocally cheaper to run large-scale AI workloads.Starting Price: $3.24 per month -
31
Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
-
32
Tecton
Tecton
Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure. -
33
Amazon EC2 G5 Instances
Amazon
Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.Starting Price: $1.006 per hour -
34
Huawei Cloud ModelArts
Huawei Cloud
ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration. -
35
Predibase
Predibase
Declarative machine learning systems provide the best of flexibility and simplicity to enable the fastest-way to operationalize state-of-the-art models. Users focus on specifying the “what”, and the system figures out the “how”. Start with smart defaults, but iterate on parameters as much as you’d like down to the level of code. Our team pioneered declarative machine learning systems in industry, with Ludwig at Uber and Overton at Apple. Choose from our menu of prebuilt data connectors that support your databases, data warehouses, lakehouses, and object storage. Train state-of-the-art deep learning models without the pain of managing infrastructure. Automated Machine Learning that strikes the balance of flexibility and control, all in a declarative fashion. With a declarative approach, finally train and deploy models as quickly as you want. -
36
Azure Machine Learning
Microsoft
Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R. -
37
Amazon SageMaker Clarify
Amazon
Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model. -
38
Google Cloud TPU
Google
Machine learning has produced business and research breakthroughs ranging from network security to medical diagnoses. We built the Tensor Processing Unit (TPU) in order to make it possible for anyone to achieve similar breakthroughs. Cloud TPU is the custom-designed machine learning ASIC that powers Google products like Translate, Photos, Search, Assistant, and Gmail. Here’s how you can put the TPU and machine learning to work accelerating your company’s success, especially at scale. Cloud TPU is designed to run cutting-edge machine learning models with AI services on Google Cloud. And its custom high-speed network offers over 100 petaflops of performance in a single pod, enough computational power to transform your business or create the next research breakthrough. Training machine learning models is like compiling code: you need to update often, and you want to do so as efficiently as possible. ML models need to be trained over and over as apps are built, deployed, and refined.Starting Price: $0.97 per chip-hour -
39
MosaicML
MosaicML
Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved. -
40
Lambda GPU Cloud
Lambda
Train the most demanding AI, ML, and Deep Learning models. Scale from a single machine to an entire fleet of VMs with a few clicks. Start or scale up your Deep Learning project with Lambda Cloud. Get started quickly, save on compute costs, and easily scale to hundreds of GPUs. Every VM comes preinstalled with the latest version of Lambda Stack, which includes major deep learning frameworks and CUDA® drivers. In seconds, access a dedicated Jupyter Notebook development environment for each machine directly from the cloud dashboard. For direct access, connect via the Web Terminal in the dashboard or use SSH directly with one of your provided SSH keys. By building compute infrastructure at scale for the unique requirements of deep learning researchers, Lambda can pass on significant savings. Benefit from the flexibility of using cloud computing without paying a fortune in on-demand pricing when workloads rapidly increase.Starting Price: $1.25 per hour -
41
Intel Tiber AI Studio
Intel
Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources. -
42
ClearML
ClearML
ClearML is the leading open source MLOps and AI platform that helps data science, ML engineering, and DevOps teams easily develop, orchestrate, and automate ML workflows at scale. Our frictionless, unified, end-to-end MLOps suite enables users and customers to focus on developing their ML code and automation. ClearML is used by more than 1,300 enterprise customers to develop a highly repeatable process for their end-to-end AI model lifecycle, from product feature exploration to model deployment and monitoring in production. Use all of our modules for a complete ecosystem or plug in and play with the tools you have. ClearML is trusted by more than 150,000 forward-thinking Data Scientists, Data Engineers, ML Engineers, DevOps, Product Managers and business unit decision makers at leading Fortune 500 companies, enterprises, academia, and innovative start-ups worldwide within industries such as gaming, biotech , defense, healthcare, CPG, retail, financial services, among others.Starting Price: $15 -
43
NetMind AI
NetMind AI
NetMind.AI is a decentralized computing platform and AI ecosystem designed to accelerate global AI innovation. By leveraging idle GPU resources worldwide, it offers accessible and affordable AI computing power to individuals, businesses, and organizations of all sizes. The platform provides a range of services, including GPU rental, serverless inference, and an AI ecosystem that encompasses data processing, model training, inference, and agent development. Users can rent GPUs at competitive prices, deploy models effortlessly with on-demand serverless inference, and access a wide array of open-source AI model APIs with high-throughput, low-latency performance. NetMind.AI also enables contributors to add their idle GPUs to the network, earning NetMind Tokens (NMT) as rewards. These tokens facilitate transactions on the platform, allowing users to pay for services such as training, fine-tuning, inference, and GPU rentals. -
44
Baseten
Baseten
Baseten is a high-performance platform designed for mission-critical AI inference workloads. It supports serving open-source, custom, and fine-tuned AI models on infrastructure built specifically for production scale. Users can deploy models on Baseten’s cloud, their own cloud, or in a hybrid setup, ensuring flexibility and scalability. The platform offers inference-optimized infrastructure that enables fast training and seamless developer workflows. Baseten also provides specialized performance optimizations tailored for generative AI applications such as image generation, transcription, text-to-speech, and large language models. With 99.99% uptime, low latency, and support from forward deployed engineers, Baseten aims to help teams bring AI products to market quickly and reliably.Starting Price: Free -
45
NVIDIA Picasso
NVIDIA
NVIDIA Picasso is a cloud service for building generative AI–powered visual applications. Enterprises, software creators, and service providers can run inference on their models, train NVIDIA Edify foundation models on proprietary data, or start from pre-trained models to generate image, video, and 3D content from text prompts. Picasso service is fully optimized for GPUs and streamlines training, optimization, and inference on NVIDIA DGX Cloud. Organizations and developers can train NVIDIA’s Edify models on their proprietary data or get started with models pre-trained with our premier partners. Expert denoising network to generate photorealistic 4K images. Temporal layers and novel video denoiser generate high-fidelity videos with temporal consistency. A novel optimization framework for generating 3D objects and meshes with high-quality geometry. Cloud service for building and deploying generative AI-powered image, video, and 3D applications. -
46
NetApp AIPod
NetApp
NetApp AIPod is a comprehensive AI infrastructure solution designed to streamline the deployment and management of artificial intelligence workloads. By integrating NVIDIA-validated turnkey solutions, such as NVIDIA DGX BasePOD™ and NetApp's cloud-connected all-flash storage, AIPod consolidates analytics, training, and inference capabilities into a single, scalable system. This convergence enables organizations to rapidly implement AI workflows, from model training to fine-tuning and inference, while ensuring robust data management and security. With preconfigured infrastructure optimized for AI tasks, NetApp AIPod reduces complexity, accelerates time to insights, and supports seamless integration into hybrid cloud environments. -
47
fal
fal.ai
fal is a serverless Python runtime that lets you scale your code in the cloud with no infra management. Build real-time AI applications with lightning-fast inference (under ~120ms). Check out some of the ready-to-use models, they have simple API endpoints ready for you to start your own AI-powered applications. Ship custom model endpoints with fine-grained control over idle timeout, max concurrency, and autoscaling. Use common models such as Stable Diffusion, Background Removal, ControlNet, and more as APIs. These models are kept warm for free. (Don't pay for cold starts) Join the discussion around our product and help shape the future of AI. Automatically scale up to hundreds of GPUs and scale down back to 0 GPUs when idle. Pay by the second only when your code is running. You can start using fal on any Python project by just importing fal and wrapping existing functions with the decorator.Starting Price: $0.00111 per second -
48
SambaNova
SambaNova Systems
SambaNova is the leading purpose-built AI system for generative and agentic AI implementations, from chips to models, that gives enterprises full control over their model and private data. We take the best models, optimize them for fast tokens and higher batch sizes, the largest inputs and enable customizations to deliver value with simplicity. The full suite includes the SambaNova DataScale system, the SambaStudio software, and the innovative SambaNova Composition of Experts (CoE) model architecture. These components combine into a powerful platform that delivers unparalleled performance, ease of use, accuracy, data privacy, and the ability to power every use case across the world's largest organizations. We give our customers the optionality to experience through the cloud or on-premise. -
49
Qubrid AI
Qubrid AI
Qubrid AI is an advanced Artificial Intelligence (AI) company with a mission to solve real world complex problems in multiple industries. Qubrid AI’s software suite comprises of AI Hub, a one-stop shop for everything AI models, AI Compute GPU Cloud and On-Prem Appliances and AI Data Connector! Train our inference industry-leading models or your own custom creations, all within a streamlined, user-friendly interface. Test and refine your models with ease, then seamlessly deploy them to unlock the power of AI in your projects. AI Hub empowers you to embark on your AI Journey, from concept to implementation, all in a single, powerful platform. Our leading cutting-edge AI Compute platform harnesses the power of GPU Cloud and On-Prem Server Appliances to efficiently develop and run next generation AI applications. Qubrid team is comprised of AI developers, researchers and partner teams all focused on enhancing this unique platform for the advancement of scientific applications.Starting Price: $0.68/hour/GPU -
50
Simplismart
Simplismart
Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.