Alternatives to Valohai

Compare Valohai alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Valohai in 2025. Compare features, ratings, user reviews, pricing, and more from Valohai competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. Valohai View Software
    Visit Website
  • 2
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Compare vs. Valohai View Software
    Visit Website
  • 3
    RunPod

    RunPod

    RunPod

    RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure.
    Compare vs. Valohai View Software
    Visit Website
  • 4
    Fraud.net

    Fraud.net

    Fraud.net, Inc.

    Fraudnet's AI-driven platform empowers enterprises to prevent threats, streamline compliance, and manage risk in real-time. Our sophisticated machine learning models continuously learn from billions of transactions to identify anomalies and predict fraud attacks. Our unified solutions: comprehensive screening for smoother onboarding & improved compliance, continuous monitoring to proactively identify new threats, & precision fraud detection across channels and payment types. With dozens of data integrations and advanced analytics, you'll dramatically reduce false positives while gaining unmatched visibility. And, with no-code/low-code integration, our solution scales effortlessly as you grow. The results speak volumes: Leading payments companies, financial institutions, innovative fintechs, and commerce brands trust us worldwide—and they're seeing dramatic results: 80% reduction in fraud losses and 97% fewer false positives. Request your demo today and discover Fraudnet.
    Compare vs. Valohai View Software
    Visit Website
  • 5
    RazorThink

    RazorThink

    RazorThink

    RZT aiOS offers all of the benefits of a unified artificial intelligence platform and more, because it's not just a platform — it's a comprehensive Operating System that fully connects, manages and unifies all of your AI initiatives. And, AI developers now can do in days what used to take them months, because aiOS process management dramatically increases the productivity of AI teams. This Operating System offers an intuitive environment for AI development, letting you visually build models, explore data, create processing pipelines, run experiments, and view analytics. What's more is that you can do it all even without advanced software engineering skills.
  • 6
    Spell

    Spell

    Spell

    The AI-First Document Editor. Spell is the AI-powered alternative to Google Docs and Word. You can create first drafts in seconds, edit using natural language, and collaborate in real time with your team. Spell is an AI-powered document writing and editing platform designed to help users create professional-quality documents in a fraction of the time. By leveraging natural language commands, Spell allows users to write, edit, and collaborate on documents seamlessly, eliminating the need for switching between tools like Google Docs or ChatGPT. Whether you're drafting reports, creating proposals, or generating research papers, Spell’s AI-driven features make document creation up to 10 times faster. The platform also supports real-time collaboration, enabling teams to work together on documents, making it an ideal solution for businesses, teams, and professionals looking to boost productivity.
  • 7
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 8
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
    Starting Price: $1.006 per hour
  • 9
    IBM Watson Machine Learning Accelerator
    Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
  • 10
    Neural Designer
    Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.
    Starting Price: $2495/year (per user)
  • 11
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 12
    Roboflow

    Roboflow

    Roboflow

    Roboflow has everything you need to build and deploy computer vision models. Connect Roboflow at any step in your pipeline with APIs and SDKs, or use the end-to-end interface to automate the entire process from image to inference. Whether you’re in need of data labeling, model training, or model deployment, Roboflow gives you building blocks to bring custom computer vision solutions to your business.
    Starting Price: $250/month
  • 13
    NVIDIA Triton Inference Server
    NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.
    Starting Price: Free
  • 14
    DeepCube

    DeepCube

    DeepCube

    DeepCube focuses on the research and development of deep learning technologies that result in improved real-world deployment of AI systems. The company’s numerous patented innovations include methods for faster and more accurate training of deep learning models and drastically improved inference performance. DeepCube’s proprietary framework can be deployed on top of any existing hardware in both datacenters and edge devices, resulting in over 10x speed improvement and memory reduction. DeepCube provides the only technology that allows efficient deployment of deep learning models on intelligent edge devices. After the deep learning training phase, the resulting model typically requires huge amounts of processing and consumes lots of memory. Due to the significant amount of memory and processing requirements, today’s deep learning deployments are limited mostly to the cloud.
  • 15
    NetApp AIPod
    NetApp AIPod is a comprehensive AI infrastructure solution designed to streamline the deployment and management of artificial intelligence workloads. By integrating NVIDIA-validated turnkey solutions, such as NVIDIA DGX BasePOD™ and NetApp's cloud-connected all-flash storage, AIPod consolidates analytics, training, and inference capabilities into a single, scalable system. This convergence enables organizations to rapidly implement AI workflows, from model training to fine-tuning and inference, while ensuring robust data management and security. With preconfigured infrastructure optimized for AI tasks, NetApp AIPod reduces complexity, accelerates time to insights, and supports seamless integration into hybrid cloud environments.
  • 16
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 17
    Segmind

    Segmind

    Segmind

    Segmind provides simplified access to large computing. You can use it to run your high-performance workloads such as Deep learning training or other complex processing jobs. Segmind offers zero-setup environments within minutes and lets your share access with your team members. Segmind's MLOps platform can also be used to manage deep learning projects end-to-end with integrated data storage and experiment tracking. ML engineers are not cloud engineers and cloud infrastructure management is a pain. So, we abstracted away all of it so that your ML team can focus on what they do best, and build models better and faster. Training ML/DL models take time and can get expensive quickly. But with Segmind, you can scale up your compute seamlessly while also reducing your costs by up to 70%, with our managed spot instances. ML managers today don't have a bird's eye view of ML development activities and cost.
  • 18
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 19
    Wallaroo.AI

    Wallaroo.AI

    Wallaroo.AI

    Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale.
  • 20
    Exafunction

    Exafunction

    Exafunction

    Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results.
  • 21
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • 22
    Zebra by Mipsology
    Zebra by Mipsology is the ideal Deep Learning compute engine for neural network inference. Zebra seamlessly replaces or complements CPUs/GPUs, allowing any neural network to compute faster, with lower power consumption, at a lower cost. Zebra deploys swiftly, seamlessly, and painlessly without knowledge of underlying hardware technology, use of specific compilation tools, or changes to the neural network, the training, the framework, and the application. Zebra computes neural networks at world-class speed, setting a new standard for performance. Zebra runs on highest-throughput boards all the way to the smallest boards. The scaling provides the required throughput, in data centers, at the edge, or in the cloud. Zebra accelerates any neural network, including user-defined neural networks. Zebra processes the same CPU/GPU-based trained neural network with the same accuracy without any change.
  • 23
    Amazon SageMaker Model Deployment
    Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
  • 24
    Seldon

    Seldon

    Seldon Technologies

    Deploy machine learning models at scale with more accuracy. Turn R&D into ROI with more models into production at scale, faster, with increased accuracy. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Deploy reduces the time to production by providing production grade inference servers optimized for popular ML framework or custom language wrappers to fit your use cases. Seldon Core Enterprise provides access to cutting-edge, globally tested and trusted open source MLOps software with the reassurance of enterprise-level support. Seldon Core Enterprise is for organizations requiring: - Coverage across any number of ML models deployed plus unlimited users - Additional assurances for models in staging and production - Confidence that their ML model deployments are supported and protected.
  • 25
    KServe

    KServe

    KServe

    Highly scalable and standards-based model inference platform on Kubernetes for trusted AI. KServe is a standard model inference platform on Kubernetes, built for highly scalable use cases. Provides performant, standardized inference protocol across ML frameworks. Support modern serverless inference workload with autoscaling including a scale to zero on GPU. Provides high scalability, density packing, and intelligent routing using ModelMesh. Simple and pluggable production serving for production ML serving including prediction, pre/post-processing, monitoring, and explainability. Advanced deployments with the canary rollout, experiments, ensembles, and transformers. ModelMesh is designed for high-scale, high-density, and frequently-changing model use cases. ModelMesh intelligently loads and unloads AI models to and from memory to strike an intelligent trade-off between responsiveness to users and computational footprint.
    Starting Price: Free
  • 26
    Domino Enterprise MLOps Platform
    The Domino platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record allows teams to easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 27
    Peltarion

    Peltarion

    Peltarion

    The Peltarion Platform is a low-code deep learning platform that allows you to build commercially viable AI-powered solutions, at speed and at scale. The platform allows you to build, tweak, fine-tune and deploy deep learning models. It is end-to-end, and lets you do everything from uploading data to building models and putting them into production. The Peltarion Platform and its precursor have been used to solve problems for organizations like NASA, Tesla, Dell, and Harvard. Build your own AI models or use our pre-trained ones. Just drag & drop, even the cutting-edge ones! Own the whole development process from building, training, tweaking to deploying AI. All under one hood. Operationalize AI and drive business value, with the help of our platform. Our Faster AI course is created for users who have no prior knowledge of AI. After completing seven short modules, users will be able to design and tweak their own AI models on the Peltarion platform.
  • 28
    Metacoder

    Metacoder

    Wazoo Mobile Technologies LLC

    Metacoder makes processing data faster and easier. Metacoder gives analysts needed flexibility and tools to facilitate data analysis. Data preparation steps such as cleaning are managed reducing the manual inspection time required before you are up and running. Compared to alternatives, is in good company. Metacoder beats similar companies on price and our management is proactively developing based on our customers' valuable feedback. Metacoder is used primarily to assist predictive analytics professionals in their job. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We help organizations distribute their work transparently by enabling model sharing, and we make management of the machine learning pipeline easy to make tweaks. Soon we will be including code free solutions for image, audio, video, and biomedical data.
    Starting Price: $89 per user/month
  • 29
    VESSL AI

    VESSL AI

    VESSL AI

    Build, train, and deploy models faster at scale with fully managed infrastructure, tools, and workflows. Deploy custom AI & LLMs on any infrastructure in seconds and scale inference with ease. Handle your most demanding tasks with batch job scheduling, only paying with per-second billing. Optimize costs with GPU usage, spot instances, and built-in automatic failover. Train with a single command with YAML, simplifying complex infrastructure setups. Automatically scale up workers during high traffic and scale down to zero during inactivity. Deploy cutting-edge models with persistent endpoints in a serverless environment, optimizing resource usage. Monitor system and inference metrics in real-time, including worker count, GPU utilization, latency, and throughput. Efficiently conduct A/B testing by splitting traffic among multiple models for evaluation.
    Starting Price: $100 + compute/month
  • 30
    Striveworks Chariot
    Make AI a trusted part of your business. Build better, deploy faster, and audit easily with the flexibility of a cloud-native platform and the power to deploy anywhere. Easily import models and search cataloged models from across your organization. Save time by annotating data rapidly with model-in-the-loop hinting. Understand the full provenance of your data, models, workflows, and inferences. Deploy models where you need them, including for edge and IoT use cases. Getting valuable insights from your data is not just for data scientists. With Chariot’s low-code interface, meaningful collaboration can take place across teams. Train models rapidly using your organization's production data. Deploy models with one click and monitor models in production at scale.
  • 31
    SquareFactory

    SquareFactory

    SquareFactory

    End-to-end project, model and hosting management platform, which allows companies to convert data and algorithms into holistic, execution-ready AI-strategies. Build, train and manage models securely with ease. Create products that consume AI models from anywhere, any time. Minimize risks of AI investments, while increasing strategic flexibility. Completely automated model testing, evaluation deployment, scaling and hardware load balancing. From real-time, low-latency, high-throughput inference to batch, long-running inference. Pay-per-second-of-use model, with an SLA, and full governance, monitoring and auditing tools. Intuitive interface that acts as a unified hub for managing projects, creating and visualizing datasets, and training models via collaborative and reproducible workflows.
  • 32
    Nebius

    Nebius

    Nebius

    Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.
    Starting Price: $2.66/hour
  • 33
    Alibaba Cloud Model Studio
    Model Studio is Alibaba Cloud’s one-stop generative AI platform that lets developers build intelligent, business-aware applications using industry-leading foundation models like Qwen-Max, Qwen-Plus, Qwen-Turbo, the Qwen-2/3 series, visual-language models (Qwen-VL/Omni), and the video-focused Wan series. Users can access these powerful GenAI models through familiar OpenAI-compatible APIs or purpose-built SDKs, no infrastructure setup required. It supports a full development workflow, experiment with models in the playground, perform real-time and batch inferences, fine-tune with tools like SFT or LoRA, then evaluate, compress, accelerate deployment, and monitor performance, all within an isolated Virtual Private Cloud (VPC) for enterprise-grade security. Customization is simplified via one-click Retrieval-Augmented Generation (RAG), enabling integration of business data into model outputs. Visual, template-driven interfaces facilitate prompt engineering and application design.
  • 34
    OpenVINO
    The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.
    Starting Price: Free
  • 35
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
    Starting Price: $1.34 per hour
  • 36
    ClearML

    ClearML

    ClearML

    ClearML is the leading open source MLOps and AI platform that helps data science, ML engineering, and DevOps teams easily develop, orchestrate, and automate ML workflows at scale. Our frictionless, unified, end-to-end MLOps suite enables users and customers to focus on developing their ML code and automation. ClearML is used by more than 1,300 enterprise customers to develop a highly repeatable process for their end-to-end AI model lifecycle, from product feature exploration to model deployment and monitoring in production. Use all of our modules for a complete ecosystem or plug in and play with the tools you have. ClearML is trusted by more than 150,000 forward-thinking Data Scientists, Data Engineers, ML Engineers, DevOps, Product Managers and business unit decision makers at leading Fortune 500 companies, enterprises, academia, and innovative start-ups worldwide within industries such as gaming, biotech , defense, healthcare, CPG, retail, financial services, among others.
    Starting Price: $15
  • 37
    NVIDIA Run:ai
    NVIDIA Run:ai is an enterprise platform designed to optimize AI workloads and orchestrate GPU resources efficiently. It dynamically allocates and manages GPU compute across hybrid, multi-cloud, and on-premises environments, maximizing utilization and scaling AI training and inference. The platform offers centralized AI infrastructure management, enabling seamless resource pooling and workload distribution. Built with an API-first approach, Run:ai integrates with major AI frameworks and machine learning tools to support flexible deployment anywhere. It also features a powerful policy engine for strategic resource governance, reducing manual intervention. With proven results like 10x GPU availability and 5x utilization, NVIDIA Run:ai accelerates AI development cycles and boosts ROI.
  • 38
    RapidMiner
    RapidMiner is reinventing enterprise AI so that anyone has the power to positively shape the future. We’re doing this by enabling ‘data loving’ people of all skill levels, across the enterprise, to rapidly create and operate AI solutions to drive immediate business impact. We offer an end-to-end platform that unifies data prep, machine learning, and model operations with a user experience that provides depth for data scientists and simplifies complex tasks for everyone else. Our Center of Excellence methodology and the RapidMiner Academy ensures customers are successful, no matter their experience or resource levels. Simplify operations, no matter how complex models are, or how they were created. Deploy, evaluate, compare, monitor, manage and swap any model. Solve your business issues faster with sharper insights and predictive models, no one understands the business problem like you do.
    Starting Price: Free
  • 39
    Abacus.AI

    Abacus.AI

    Abacus.AI

    Abacus.AI is the world's first end-to-end autonomous AI platform that enables real-time deep learning at scale for common enterprise use-cases. Apply our innovative neural architecture search techniques to train custom deep learning models and deploy them on our end to end DLOps platform. Our AI engine will increase your user engagement by at least 30% with personalized recommendations. We generate recommendations that are truly personalized to individual preferences which means more user interaction and conversion. Don't waste time in dealing with data hassles. We will automatically create your data pipelines and retrain your models. We use generative modeling to produce recommendations that means even with very little data about a particular user/item you won't have a cold start.
  • 40
    GMI Cloud

    GMI Cloud

    GMI Cloud

    Build your generative AI applications in minutes on GMI GPU Cloud. GMI Cloud is more than bare metal. Train, fine-tune, and infer state-of-the-art models. Our clusters are ready to go with scalable GPU containers and preconfigured popular ML frameworks. Get instant access to the latest GPUs for your AI workloads. Whether you need flexible on-demand GPUs or dedicated private cloud instances, we've got you covered. Maximize GPU resources with our turnkey Kubernetes software. Easily allocate, deploy, and monitor GPUs or nodes with our advanced orchestration tools. Customize and serve models to build AI applications using your data. GMI Cloud lets you deploy any GPU workload quickly and easily, so you can focus on running ML models, not managing infrastructure. Launch pre-configured environments and save time on building container images, installing software, downloading models, and configuring environment variables. Or use your own Docker image to fit your needs.
    Starting Price: $2.50 per hour
  • 41
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
    Starting Price: $0.228 per hour
  • 42
    Amazon SageMaker Feature Store
    Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
  • 43
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 44
    Replicate

    Replicate

    Replicate

    Replicate is a platform that enables developers and businesses to run, fine-tune, and deploy machine learning models at scale with minimal effort. It offers an easy-to-use API that allows users to generate images, videos, speech, music, and text using thousands of community-contributed models. Users can fine-tune existing models with their own data to create custom versions tailored to specific tasks. Replicate supports deploying custom models using its open-source tool Cog, which handles packaging, API generation, and scalable cloud deployment. The platform automatically scales compute resources based on demand, charging users only for the compute time they consume. With robust logging, monitoring, and a large model library, Replicate aims to simplify the complexities of production ML infrastructure.
    Starting Price: Free
  • 45
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 46
    Towhee

    Towhee

    Towhee

    You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.
    Starting Price: Free
  • 47
    Tecton

    Tecton

    Tecton

    Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure.
  • 48
    Feast

    Feast

    Tecton

    Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution.
  • 49
    Analance
    Combining Data Science, Business Intelligence, and Data Management Capabilities in One Integrated, Self-Serve Platform. Analance is a robust, salable end-to-end platform that combines Data Science, Advanced Analytics, Business Intelligence, and Data Management into one integrated self-serve platform. It is built to deliver core analytical processing power to ensure data insights are accessible to everyone, performance remains consistent as the system grows, and business objectives are continuously met within a single platform. Analance is focused on turning quality data into accurate predictions allowing both data scientists and citizen data scientists with point and click pre-built algorithms and an environment for custom coding. Company – Overview Ducen IT helps Business and IT users of Fortune 1000 companies with advanced analytics, business intelligence and data management through its unique end-to-end data science platform called Analance.
  • 50
    Mintrics

    Mintrics

    Mintrics

    Mintrics is the ultimate social video analytics dashboard, with market and competitor intelligence. It lets brands, agencies, and content creators understand exactly which videos are performing well, which aren't, and why. With Mintrics, all of your videos across Facebook and YouTube are analyzed in one place. It connects to the various APIs using the users' tokens to gather data that is not available publicly, runs all sorts of calculations and displays unique metrics with historical data. But since metrics are useless on their own, Mintrics offers benchmarks, monthly reports, and personalized recommendations. First, on a page/channel level to clearly indicate how a given video's performing against the rest, and then industry benchmarks that show performance against the competition at large. You also get to track & group your competitors in lists and view the market insights in whole using Mintrics live leaderboard!
    Starting Price: $79