Google Cloud BigQuery
BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven.
Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
Learn more
Vertex AI
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case.
Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection.
Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
Learn more
FeatureByte
FeatureByte is your AI data scientist streamlining the entire lifecycle so that what once took months now happens in hours. Deployed natively on Databricks, Snowflake, BigQuery, or Spark, it automates feature engineering, ideation, cataloging, custom UDFs (including transformer support), evaluation, selection, historical backfill, deployment, and serving (online or batch), all within a unified platform. FeatureByte’s GenAI‑inspired agents, data, domain, MLOps, and data science agents interactively guide teams through data acquisition, quality, feature generation, model creation, deployment orchestration, and continued monitoring. FeatureByte’s SDK and intuitive UI enable automated and semi‑automated feature ideation, customizable pipelines, cataloging, lineage tracking, approval flows, RBAC, alerts, and version control, empowering teams to build, refine, document, and serve features rapidly and reliably.
Learn more