Alternatives to R1 1776

Compare R1 1776 alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to R1 1776 in 2025. Compare features, ratings, user reviews, pricing, and more from R1 1776 competitors and alternatives in order to make an informed decision for your business.

  • 1
    OpenEuroLLM

    OpenEuroLLM

    OpenEuroLLM

    OpenEuroLLM is a collaborative initiative among Europe's leading AI companies and research institutions to develop a series of open-source foundation models for transparent AI in Europe. The project emphasizes transparency by openly sharing data, documentation, training, testing code, and evaluation metrics, fostering community involvement. It ensures compliance with EU regulations, aiming to provide performant large language models that align with European standards. A key focus is on linguistic and cultural diversity, extending multilingual capabilities to encompass all EU official languages and beyond. The initiative seeks to enhance access to foundational models ready for fine-tuning across various applications, expand evaluation results in multiple languages, and increase the availability of training datasets and benchmarks. Transparency is maintained throughout the training processes by sharing tools, methodologies, and intermediate results.
  • 2
    Inflection AI

    Inflection AI

    Inflection AI

    Inflection AI is a cutting-edge artificial intelligence research and development company focused on creating advanced AI systems designed to interact with humans in more natural, intuitive ways. Founded in 2022 by entrepreneurs such as Mustafa Suleyman, one of the co-founders of DeepMind, and Reid Hoffman, co-founder of LinkedIn, the company's mission is to make powerful AI more accessible and aligned with human values. Inflection AI specializes in building large-scale language models that enhance human-AI communication, aiming to transform industries ranging from customer service to personal productivity through intelligent, responsive, and ethically designed AI systems. The company's focus on safety, transparency, and user control ensures that their innovations contribute positively to society while addressing potential risks associated with AI technology.
    Starting Price: Free
  • 3
    Smaug-72B
    Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.
    Starting Price: Free
  • 4
    Open R1

    Open R1

    Open R1

    Open R1 is a community-driven, open-source initiative aimed at replicating the advanced AI capabilities of DeepSeek-R1 through transparent methodologies. You can try Open R1 AI model or DeepSeek R1 free online chat on Open R1. The project offers a comprehensive implementation of DeepSeek-R1's reasoning-optimized training pipeline, including tools for GRPO training, SFT fine-tuning, and synthetic data generation, all under the MIT license. While the original training data remains proprietary, Open R1 provides the complete toolchain for users to develop and fine-tune their own models.
    Starting Price: Free
  • 5
    DeepSeek-V3.1-Terminus
    DeepSeek has released DeepSeek-V3.1-Terminus, which enhances the V3.1 architecture by incorporating user feedback to improve output stability, consistency, and agent performance. It notably reduces instances of mixed Chinese/English character output and unintended garbled characters, resulting in cleaner, more consistent language generation. The update upgrades both the code agent and search agent subsystems to yield stronger, more reliable performance across benchmarks. DeepSeek-V3.1-Terminus is also available as an open source model, and its weights are published on Hugging Face. The model structure remains the same as DeepSeek-V3, ensuring compatibility with existing deployment methods, with updated inference demos provided for community use. While trained at a scale of 685B parameters, the model includes FP8, BF16, and F32 tensor formats, offering flexibility across environments.
    Starting Price: Free
  • 6
    DeepSeek V3.1
    DeepSeek V3.1 is a groundbreaking open-weight large language model featuring a massive 685-billion parameters and an extended 128,000‑token context window, enabling it to process documents equivalent to 400-page books in a single prompt. It delivers integrated capabilities for chat, reasoning, and code generation within a unified hybrid architecture, seamlessly blending these functions into one coherent model. V3.1 supports a variety of tensor formats to give developers flexibility in optimizing performance across different hardware. Early benchmark results show robust performance, including a 71.6% score on the Aider coding benchmark, putting it on par with or ahead of systems like Claude Opus 4 and doing so at a far lower cost. Made available under an open source license on Hugging Face with minimal fanfare, DeepSeek V3.1 is poised to reshape access to high-performance AI, challenging traditional proprietary models.
    Starting Price: Free
  • 7
    Sarvam AI

    Sarvam AI

    Sarvam AI

    We are developing efficient large language models for India's diverse linguistic culture and enabling new GenAI applications through bespoke enterprise models. We are building an enterprise-grade platform that lets you develop and evaluate your company’s GenAI apps. We believe in the power of open-source to accelerate AI innovation and will be contributing to open-source models and datasets, as well be leading efforts for large-scale data curation in public-good space. We are a dynamic and close-knit team of AI pioneers, blending expertise in research, engineering, product design, and business operations. Our diverse backgrounds unite under a shared commitment to excellence in science and the creation of societal impact. We foster an environment where tackling complex tech challenges is not just a job, but a passion.
  • 8
    Gemini Flash
    Gemini Flash is an advanced large language model (LLM) from Google, specifically designed for high-speed, low-latency language processing tasks. Part of Google DeepMind’s Gemini series, Gemini Flash is tailored to provide real-time responses and handle large-scale applications, making it ideal for interactive AI-driven experiences such as customer support, virtual assistants, and live chat solutions. Despite its speed, Gemini Flash doesn’t compromise on quality; it’s built on sophisticated neural architectures that ensure responses remain contextually relevant, coherent, and precise. Google has incorporated rigorous ethical frameworks and responsible AI practices into Gemini Flash, equipping it with guardrails to manage and mitigate biased outputs, ensuring it aligns with Google’s standards for safe and inclusive AI. With Gemini Flash, Google empowers businesses and developers to deploy responsive, intelligent language tools that can meet the demands of fast-paced environments.
  • 9
    DeepSeek R1

    DeepSeek R1

    DeepSeek

    DeepSeek-R1 is an advanced open-source reasoning model developed by DeepSeek, designed to rival OpenAI's Model o1. Accessible via web, app, and API, it excels in complex tasks such as mathematics and coding, demonstrating superior performance on benchmarks like the American Invitational Mathematics Examination (AIME) and MATH. DeepSeek-R1 employs a mixture of experts (MoE) architecture with 671 billion total parameters, activating 37 billion parameters per token, enabling efficient and accurate reasoning capabilities. This model is part of DeepSeek's commitment to advancing artificial general intelligence (AGI) through open-source innovation.
  • 10
    DeepSeek-V2

    DeepSeek-V2

    DeepSeek

    DeepSeek-V2 is a state-of-the-art Mixture-of-Experts (MoE) language model introduced by DeepSeek-AI, characterized by its economical training and efficient inference capabilities. With a total of 236 billion parameters, of which only 21 billion are active per token, it supports a context length of up to 128K tokens. DeepSeek-V2 employs innovative architectures like Multi-head Latent Attention (MLA) for efficient inference by compressing the Key-Value (KV) cache and DeepSeekMoE for cost-effective training through sparse computation. This model significantly outperforms its predecessor, DeepSeek 67B, by saving 42.5% in training costs, reducing the KV cache by 93.3%, and enhancing generation throughput by 5.76 times. Pretrained on an 8.1 trillion token corpus, DeepSeek-V2 excels in language understanding, coding, and reasoning tasks, making it a top-tier performer among open-source models.
    Starting Price: Free
  • 11
    Janus-Pro-7B
    Janus-Pro-7B is an innovative open-source multimodal AI model from DeepSeek, designed to excel in both understanding and generating content across text, images, and videos. It leverages a unique autoregressive architecture with separate pathways for visual encoding, enabling high performance in tasks ranging from text-to-image generation to complex visual comprehension. This model outperforms competitors like DALL-E 3 and Stable Diffusion in various benchmarks, offering scalability with versions from 1 billion to 7 billion parameters. Licensed under the MIT License, Janus-Pro-7B is freely available for both academic and commercial use, providing a significant leap in AI capabilities while being accessible on major operating systems like Linux, MacOS, and Windows through Docker.
    Starting Price: Free
  • 12
    QwQ-32B

    QwQ-32B

    Alibaba

    ​QwQ-32B is an advanced reasoning model developed by Alibaba Cloud's Qwen team, designed to enhance AI's problem-solving capabilities. With 32 billion parameters, it achieves performance comparable to state-of-the-art models like DeepSeek's R1, which has 671 billion parameters. This efficiency is achieved through optimized parameter utilization, allowing QwQ-32B to perform complex tasks such as mathematical reasoning, coding, and general problem-solving with fewer resources. The model supports a context length of up to 32,000 tokens, enabling it to process extensive input data effectively. QwQ-32B is accessible via Alibaba's chatbot service, Qwen Chat, and is open sourced under the Apache 2.0 license, promoting collaboration and further development within the AI community.
    Starting Price: Free
  • 13
    DeepSeek-V3

    DeepSeek-V3

    DeepSeek

    DeepSeek-V3 is a state-of-the-art AI model designed to deliver unparalleled performance in natural language understanding, advanced reasoning, and decision-making tasks. Leveraging next-generation neural architectures, it integrates extensive datasets and fine-tuned algorithms to tackle complex challenges across diverse domains such as research, development, business intelligence, and automation. With a focus on scalability and efficiency, DeepSeek-V3 provides developers and enterprises with cutting-edge tools to accelerate innovation and achieve transformative outcomes.
  • 14
    Marco-o1

    Marco-o1

    AIDC-AI

    Marco-o1 is a robust, next-generation AI model tailored for high-performance natural language processing and real-time problem-solving. It is engineered to deliver precise and contextually rich responses, combining deep language comprehension with a streamlined architecture for speed and efficiency. Marco-o1 excels in a variety of applications, including conversational AI, content creation, technical support, and decision-making tasks, adapting seamlessly to diverse user needs. With a focus on intuitive interactions, reliability, and ethical AI principles, Marco-o1 stands out as a cutting-edge solution for individuals and organizations seeking intelligent, adaptive, and scalable AI-driven tools. MCTS allows the exploration of multiple reasoning paths using confidence scores derived from softmax-applied log probabilities of the top-k alternative tokens, guiding the model to optimal solutions.
    Starting Price: Free
  • 15
    NVIDIA Nemotron
    NVIDIA Nemotron is a family of open-source models developed by NVIDIA, designed to generate synthetic data for training large language models (LLMs) for commercial applications. The Nemotron-4 340B model, in particular, is a significant release by NVIDIA, offering developers a powerful tool to generate high-quality data and filter it based on various attributes using a reward model.
  • 16
    Qwen2.5

    Qwen2.5

    Alibaba

    Qwen2.5 is an advanced multimodal AI model designed to provide highly accurate and context-aware responses across a wide range of applications. It builds on the capabilities of its predecessors, integrating cutting-edge natural language understanding with enhanced reasoning, creativity, and multimodal processing. Qwen2.5 can seamlessly analyze and generate text, interpret images, and interact with complex data to deliver precise solutions in real time. Optimized for adaptability, it excels in personalized assistance, data analysis, creative content generation, and academic research, making it a versatile tool for professionals and everyday users alike. Its user-centric design emphasizes transparency, efficiency, and alignment with ethical AI practices.
    Starting Price: Free
  • 17
    QwQ-Max-Preview
    QwQ-Max-Preview is an advanced AI model built on the Qwen2.5-Max architecture, designed to excel in deep reasoning, mathematical problem-solving, coding, and agent-related tasks. This preview version offers a sneak peek at its capabilities, which include improved performance in a wide range of general-domain tasks and the ability to handle complex workflows. QwQ-Max-Preview is slated for an official open-source release under the Apache 2.0 license, offering further advancements and refinements in its full version. It also paves the way for a more accessible AI ecosystem, with the upcoming launch of the Qwen Chat app and smaller variants of the model like QwQ-32B, aimed at developers seeking local deployment options.
    Starting Price: Free
  • 18
    Cerebras-GPT
    State-of-the-art language models are extremely challenging to train; they require huge compute budgets, complex distributed compute techniques and deep ML expertise. As a result, few organizations train large language models (LLMs) from scratch. And increasingly those that have the resources and expertise are not open sourcing the results, marking a significant change from even a few months back. At Cerebras, we believe in fostering open access to the most advanced models. With this in mind, we are proud to announce the release to the open source community of Cerebras-GPT, a family of seven GPT models ranging from 111 million to 13 billion parameters. Trained using the Chinchilla formula, these models provide the highest accuracy for a given compute budget. Cerebras-GPT has faster training times, lower training costs, and consumes less energy than any publicly available model to date.
    Starting Price: Free
  • 19
    OpenGPT-X

    OpenGPT-X

    OpenGPT-X

    OpenGPT-X is a German initiative focused on developing large AI language models tailored to European needs, emphasizing versatility, trustworthiness, multilingual capabilities, and open-source accessibility. The project brings together a consortium of partners to cover the entire generative AI value chain, from scalable, GPU-based infrastructure and data for training large language models to model design and practical applications through prototypes and proofs of concept. OpenGPT-X aims to advance cutting-edge research with a strong focus on business applications, thereby accelerating the adoption of generative AI in the German economy. The project also emphasizes responsible AI development, ensuring that the models are trustworthy and align with European values and regulations. The project provides resources such as the LLM Workbook, and a three-part reference guide with resources and examples to help users understand the key features of large AI language models.
    Starting Price: Free
  • 20
    Claude Sonnet 3.7
    Claude Sonnet 3.7, developed by Anthropic, is a cutting-edge AI model that combines rapid response with deep reflective reasoning. This innovative model allows users to toggle between quick, efficient responses and more thoughtful, reflective answers, making it ideal for complex problem-solving. By allowing Claude to self-reflect before answering, it excels at tasks that require high-level reasoning and nuanced understanding. With its ability to engage in deeper thought processes, Claude Sonnet 3.7 enhances tasks such as coding, natural language processing, and critical thinking applications. Available across various platforms, it offers a powerful tool for professionals and organizations seeking a high-performance, adaptable AI.
  • 21
    Cohere

    Cohere

    Cohere AI

    Cohere is an enterprise AI platform that enables developers and businesses to build powerful language-based applications. Specializing in large language models (LLMs), Cohere provides solutions for text generation, summarization, and semantic search. Their model offerings include the Command family for high-performance language tasks and Aya Expanse for multilingual applications across 23 languages. Focused on security and customization, Cohere allows flexible deployment across major cloud providers, private cloud environments, or on-premises setups to meet diverse enterprise needs. The company collaborates with industry leaders like Oracle and Salesforce to integrate generative AI into business applications, improving automation and customer engagement. Additionally, Cohere For AI, their research lab, advances machine learning through open-source projects and a global research community.
  • 22
    Alpa

    Alpa

    Alpa

    Alpa aims to automate large-scale distributed training and serving with just a few lines of code. Alpa was initially developed by folks in the Sky Lab, UC Berkeley. Some advanced techniques used in Alpa have been written in a paper published in OSDI'2022. Alpa community is growing with new contributors from Google. A language model is a probability distribution over sequences of words. It predicts the next word based on all the previous words. It is useful for a variety of AI applications, such the auto-completion in your email or chatbot service. For more information, check out the language model wikipedia page. GPT-3 is very large language model, with 175 billion parameters, that uses deep learning to produce human-like text. Many researchers and news articles described GPT-3 as "one of the most interesting and important AI systems ever produced". GPT-3 is gradually being used as a backbone in the latest NLP research and applications.
    Starting Price: Free
  • 23
    Yi-Lightning

    Yi-Lightning

    Yi-Lightning

    Yi-Lightning, developed by 01.AI under the leadership of Kai-Fu Lee, represents the latest advancement in large language models with a focus on high performance and cost-efficiency. It boasts a maximum context length of 16K tokens and is priced at $0.14 per million tokens for both input and output, making it remarkably competitive. Yi-Lightning leverages an enhanced Mixture-of-Experts (MoE) architecture, incorporating fine-grained expert segmentation and advanced routing strategies, which contribute to its efficiency in training and inference. This model has excelled in various domains, achieving top rankings in categories like Chinese, math, coding, and hard prompts on the chatbot arena, where it secured the 6th position overall and 9th in style control. Its development included comprehensive pre-training, supervised fine-tuning, and reinforcement learning from human feedback, ensuring both performance and safety, with optimizations in memory usage and inference speed.
  • 24
    DeepSeek R2

    DeepSeek R2

    DeepSeek

    DeepSeek R2 is the anticipated successor to DeepSeek R1, a groundbreaking AI reasoning model launched in January 2025 by the Chinese AI startup DeepSeek. Building on R1’s success, which disrupted the AI industry with its cost-effective performance rivaling top-tier models like OpenAI’s o1, R2 promises a quantum leap in capabilities. It is expected to deliver exceptional speed and human-like reasoning, excelling in complex tasks such as advanced coding and high-level mathematical problem-solving. Leveraging DeepSeek’s innovative Mixture-of-Experts architecture and efficient training methods, R2 aims to outperform its predecessor while maintaining a low computational footprint, potentially expanding its reasoning abilities to languages beyond English.
    Starting Price: Free
  • 25
    DeepSeek-V3.2-Exp
    Introducing DeepSeek-V3.2-Exp, our latest experimental model built on V3.1-Terminus, debuting DeepSeek Sparse Attention (DSA) for faster and more efficient inference and training on long contexts. DSA enables fine-grained sparse attention with minimal loss in output quality, boosting performance for long-context tasks while reducing compute costs. Benchmarks indicate that V3.2-Exp performs on par with V3.1-Terminus despite these efficiency gains. The model is now live across app, web, and API. Alongside this, the DeepSeek API prices have been cut by over 50% immediately to make access more affordable. For a transitional period, users can still access V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek welcomes feedback on DSA via its feedback portal. In conjunction with the release, DeepSeek-V3.2-Exp has been open-sourced: the model weights and supporting technology (including key GPU kernels in TileLang and CUDA) are available on Hugging Face.
  • 26
    Lune AI

    Lune AI

    LuneAI

    A community-driven marketplace of individual expert LLMs created by devs on technical topics that outperform standalone AI models. Reduce hallucinations on technical queries with Lunes that keep themselves up-to-date on various technical knowledge sources such as Github repositories, documentation, and more. Get references back just like Perplexity. Find and use hundreds of Lunes other users have created ranging from Lunes trained on open-source tools, to curated collections of tech blog posts. Create one from a variety of sources, including your own projects, and get exposure. Our API is hot-swappable with OpenAI's. Easily integrate with Cursor, Continue, and other various tools that support OpenAI-compatible models. Carry on with your conversations from your IDE to Lune Web at any time. Make a contribution directly within the chat, and get paid for every approved feedback. Or create a public Lune and share it out and get paid for your Lune's popularity.
    Starting Price: $10 per month
  • 27
    Qwen2.5-Max
    Qwen2.5-Max is a large-scale Mixture-of-Experts (MoE) model developed by the Qwen team, pretrained on over 20 trillion tokens and further refined through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). In evaluations, it outperforms models like DeepSeek V3 in benchmarks such as Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also demonstrating competitive results in other assessments, including MMLU-Pro. Qwen2.5-Max is accessible via API through Alibaba Cloud and can be explored interactively on Qwen Chat.
    Starting Price: Free
  • 28
    Hunyuan-TurboS
    Tencent's Hunyuan-TurboS is a next-generation AI model designed to offer rapid responses and outstanding performance in various domains such as knowledge, mathematics, and creative tasks. Unlike previous models that require "slow thinking," Hunyuan-TurboS enhances response speed, doubling word output speed and reducing first-word latency by 44%. Through innovative architecture, it provides superior performance while lowering deployment costs. This model combines fast thinking (intuition-based responses) with slow thinking (logical analysis), ensuring quicker, more accurate solutions across diverse scenarios. Hunyuan-TurboS excels in benchmarks, competing with leading models like GPT-4 and DeepSeek V3, making it a breakthrough in AI-driven performance.
  • 29
    Gemma

    Gemma

    Google

    Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is inspired by Gemini, and the name reflects the Latin gemma, meaning “precious stone.” Accompanying our model weights, we’re also releasing tools to support developer innovation, foster collaboration, and guide the responsible use of Gemma models. Gemma models share technical and infrastructure components with Gemini, our largest and most capable AI model widely available today. This enables Gemma 2B and 7B to achieve best-in-class performance for their sizes compared to other open models. And Gemma models are capable of running directly on a developer laptop or desktop computer. Notably, Gemma surpasses significantly larger models on key benchmarks while adhering to our rigorous standards for safe and responsible outputs.
  • 30
    Phi-2

    Phi-2

    Microsoft

    We are now releasing Phi-2, a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters. On complex benchmarks Phi-2 matches or outperforms models up to 25x larger, thanks to new innovations in model scaling and training data curation. With its compact size, Phi-2 is an ideal playground for researchers, including for exploration around mechanistic interpretability, safety improvements, or fine-tuning experimentation on a variety of tasks. We have made Phi-2 available in the Azure AI Studio model catalog to foster research and development on language models.
  • 31
    Falcon Mamba 7B

    Falcon Mamba 7B

    Technology Innovation Institute (TII)

    Falcon Mamba 7B is the first open-source State Space Language Model (SSLM), introducing a groundbreaking architecture for Falcon models. Recognized as the top-performing open-source SSLM worldwide by Hugging Face, it sets a new benchmark in AI efficiency. Unlike traditional transformers, SSLMs operate with minimal memory requirements and can generate extended text sequences without additional overhead. Falcon Mamba 7B surpasses leading transformer-based models, including Meta’s Llama 3.1 8B and Mistral’s 7B, showcasing superior performance. This innovation underscores Abu Dhabi’s commitment to advancing AI research and development on a global scale.
    Starting Price: Free
  • 32
    Ai2 OLMoE

    Ai2 OLMoE

    The Allen Institute for Artificial Intelligence

    Ai2 OLMoE is a fully open source mixture-of-experts language model that is capable of running completely on-device, allowing you to try our model privately and securely. Our app is intended to help researchers better explore how to make on-device intelligence better and to enable developers to quickly prototype new AI experiences, all with no cloud connectivity required. OLMoE is a highly efficient mixture-of-experts version of the Ai2 OLMo family of models. Experience which real-world tasks state-of-the-art local models are capable of. Research how to improve small AI models. Test your own models locally using our open-source codebase. Integrate OLMoE into other iOS applications. The Ai2 OLMoE app provides privacy and security by operating completely on-device. Easily share the output of your conversations with friends or colleagues. The OLMoE model and the application code are fully open source.
    Starting Price: Free
  • 33
    Hunyuan T1

    Hunyuan T1

    Tencent

    ​​Hunyuan T1 is Tencent's deep-thinking AI model, now fully open to all users through the Tencent Yuanbao platform. This model excels in understanding multiple dimensions and potential logical relationships, making it suitable for handling complex tasks. Users can experience various AI models on the platform, including DeepSeek-R1 and Tencent Hunyuan Turbo. The official version of the Tencent Hunyuan T1 model will also be launched soon, providing external API access and other services. Built upon Tencent's Hunyuan large language model, Yuanbao excels in Chinese language understanding, logical reasoning, and task execution. It offers AI-based search, summaries, and writing capabilities, enabling users to analyze documents and engage in prompt-based interactions.
  • 34
    GPT4All

    GPT4All

    Nomic AI

    GPT4All is an ecosystem to train and deploy powerful and customized large language models that run locally on consumer-grade CPUs. The goal is simple - be the best instruction-tuned assistant-style language model that any person or enterprise can freely use, distribute and build on. A GPT4All model is a 3GB - 8GB file that you can download and plug into the GPT4All open-source ecosystem software. Nomic AI supports and maintains this software ecosystem to enforce quality and security alongside spearheading the effort to allow any person or enterprise to easily train and deploy their own on-edge large language models. Data is one the most important ingredients to successfully building a powerful, general-purpose large language model. The GPT4All community has built the GPT4All open source data lake as a staging ground for contributing instruction and assistant tuning data for future GPT4All model trains.
    Starting Price: Free
  • 35
    Gemma 3

    Gemma 3

    Google

    Gemma 3, introduced by Google, is a new AI model built on the Gemini 2.0 architecture, designed to offer enhanced performance and versatility. This model is capable of running efficiently on a single GPU or TPU, making it accessible for a wide range of developers and researchers. Gemma 3 focuses on improving natural language understanding, generation, and other AI-driven tasks. By offering scalable, powerful AI capabilities, Gemma 3 aims to advance the development of AI systems across various industries and use cases.
    Starting Price: Free
  • 36
    Llama 3.2
    The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1. Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.
    Starting Price: Free
  • 37
    Claude Opus 4.1
    Claude Opus 4.1 is an incremental upgrade to Claude Opus 4 that boosts coding, agentic reasoning, and data-analysis performance without changing deployment complexity. It raises coding accuracy to 74.5 percent on SWE-bench Verified and sharpens in-depth research and detailed tracking for agentic search tasks. GitHub reports notable gains in multi-file code refactoring, while Rakuten Group highlights its precision in pinpointing exact corrections within large codebases without introducing bugs. Independent benchmarks show about a one-standard-deviation improvement on junior developer tests compared to Opus 4, mirroring major leaps seen in prior Claude releases. Opus 4.1 is available now to paid Claude users, in Claude Code, and via the Anthropic API (model ID claude-opus-4-1-20250805), as well as through Amazon Bedrock and Google Cloud Vertex AI, and integrates seamlessly into existing workflows with no additional setup beyond selecting the new model.
  • 38
    Gopher

    Gopher

    DeepMind

    Language, and its role in demonstrating and facilitating comprehension - or intelligence - is a fundamental part of being human. It gives people the ability to communicate thoughts and concepts, express ideas, create memories, and build mutual understanding. These are foundational parts of social intelligence. It’s why our teams at DeepMind study aspects of language processing and communication, both in artificial agents and in humans. As part of a broader portfolio of AI research, we believe the development and study of more powerful language models – systems that predict and generate text – have tremendous potential for building advanced AI systems that can be used safely and efficiently to summarise information, provide expert advice and follow instructions via natural language. Developing beneficial language models requires research into their potential impacts, including the risks they pose.
  • 39
    OPT

    OPT

    Meta

    Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models.
  • 40
    Mistral NeMo

    Mistral NeMo

    Mistral AI

    Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.
    Starting Price: Free
  • 41
    Llama

    Llama

    Meta

    Llama (Large Language Model Meta AI) is a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. Smaller, more performant models such as Llama enable others in the research community who don’t have access to large amounts of infrastructure to study these models, further democratizing access in this important, fast-changing field. Training smaller foundation models like Llama is desirable in the large language model space because it requires far less computing power and resources to test new approaches, validate others’ work, and explore new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-tuning for a variety of tasks. We are making Llama available at several sizes (7B, 13B, 33B, and 65B parameters) and also sharing a Llama model card that details how we built the model in keeping with our approach to Responsible AI practices.
  • 42
    Gemini Advanced
    Gemini Advanced is a cutting-edge AI model designed for unparalleled performance in natural language understanding, generation, and problem-solving across diverse domains. Featuring a revolutionary neural architecture, it delivers exceptional accuracy, nuanced contextual comprehension, and deep reasoning capabilities. Gemini Advanced is engineered to handle complex, multifaceted tasks, from creating detailed technical content and writing code to conducting in-depth data analysis and providing strategic insights. Its adaptability and scalability make it a powerful solution for both individual users and enterprise-level applications. Gemini Advanced sets a new standard for intelligence, innovation, and reliability in AI-powered solutions. You'll also get access to Gemini in Gmail, Docs, and more, 2 TB storage, and other benefits from Google One. Gemini Advanced also offers access to Gemini with Deep Research. You can conduct in-depth and real-time research on almost any subject.
    Starting Price: $19.99 per month
  • 43
    OLMo 2
    OLMo 2 is a family of fully open language models developed by the Allen Institute for AI (AI2), designed to provide researchers and developers with transparent access to training data, open-source code, reproducible training recipes, and comprehensive evaluations. These models are trained on up to 5 trillion tokens and are competitive with leading open-weight models like Llama 3.1 on English academic benchmarks. OLMo 2 emphasizes training stability, implementing techniques to prevent loss spikes during long training runs, and utilizes staged training interventions during late pretraining to address capability deficiencies. The models incorporate state-of-the-art post-training methodologies from AI2's Tülu 3, resulting in the creation of OLMo 2-Instruct models. An actionable evaluation framework, the Open Language Modeling Evaluation System (OLMES), was established to guide improvements through development stages, consisting of 20 evaluation benchmarks assessing core capabilities.
  • 44
    Tülu 3
    Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.
    Starting Price: Free
  • 45
    Yi-Large
    Yi-Large is a proprietary large language model developed by 01.AI, offering a 32k context length with both input and output costs at $2 per million tokens. It stands out with its advanced capabilities in natural language processing, common-sense reasoning, and multilingual support, performing on par with leading models like GPT-4 and Claude3 in various benchmarks. Yi-Large is designed for tasks requiring complex inference, prediction, and language understanding, making it suitable for applications like knowledge search, data classification, and creating human-like chatbots. Its architecture is based on a decoder-only transformer with enhancements such as pre-normalization and Group Query Attention, and it has been trained on a vast, high-quality multilingual dataset. This model's versatility and cost-efficiency make it a strong contender in the AI market, particularly for enterprises aiming to deploy AI solutions globally.
    Starting Price: $0.19 per 1M input token
  • 46
    Falcon 3

    Falcon 3

    Technology Innovation Institute (TII)

    Falcon 3 is an open-source large language model (LLM) developed by the Technology Innovation Institute (TII) to make advanced AI accessible to a broader audience. Designed for efficiency, it operates seamlessly on lightweight devices, including laptops, without compromising performance. The Falcon 3 ecosystem comprises four scalable models, each tailored to diverse applications, and supports multiple languages while optimizing resource usage. This latest iteration in TII's LLM series achieves state-of-the-art results in reasoning, language understanding, instruction following, code, and mathematics tasks. By combining high performance with resource efficiency, Falcon 3 aims to democratize access to AI, empowering users across various sectors to leverage advanced technology without the need for extensive computational resources.
    Starting Price: Free
  • 47
    Qwen3

    Qwen3

    Alibaba

    Qwen3, the latest iteration of the Qwen family of large language models, introduces groundbreaking features that enhance performance across coding, math, and general capabilities. With models like the Qwen3-235B-A22B and Qwen3-30B-A3B, Qwen3 achieves impressive results compared to top-tier models, thanks to its hybrid thinking modes that allow users to control the balance between deep reasoning and quick responses. The platform supports 119 languages and dialects, making it an ideal choice for global applications. Its pre-training process, which uses 36 trillion tokens, enables robust performance, and advanced reinforcement learning (RL) techniques continue to refine its capabilities. Available on platforms like Hugging Face and ModelScope, Qwen3 offers a powerful tool for developers and researchers working in diverse fields.
    Starting Price: Free
  • 48
    NVIDIA NeMo
    NVIDIA NeMo LLM is a service that provides a fast path to customizing and using large language models trained on several frameworks. Developers can deploy enterprise AI applications using NeMo LLM on private and public clouds. They can also experience Megatron 530B—one of the largest language models—through the cloud API or experiment via the LLM service. Customize your choice of various NVIDIA or community-developed models that work best for your AI applications. Within minutes to hours, get better responses by providing context for specific use cases using prompt learning techniques. Leverage the power of NVIDIA Megatron 530B, one of the largest language models, through the NeMo LLM Service or the cloud API. Take advantage of models for drug discovery, including in the cloud API and NVIDIA BioNeMo framework.
  • 49
    Llama 3.3
    Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.
    Starting Price: Free
  • 50
    Teuken 7B

    Teuken 7B

    OpenGPT-X

    Teuken-7B is a multilingual, open source language model developed under the OpenGPT-X initiative, specifically designed to cater to Europe's diverse linguistic landscape. It has been trained on a dataset comprising over 50% non-English texts, encompassing all 24 official languages of the European Union, ensuring robust performance across these languages. A key innovation in Teuken-7B is its custom multilingual tokenizer, optimized for European languages, which enhances training efficiency and reduces inference costs compared to standard monolingual tokenizers. The model is available in two versions, Teuken-7B-Base, the foundational pre-trained model, and Teuken-7B-Instruct, which has undergone instruction tuning for improved performance in following user prompts. Both versions are accessible on Hugging Face, promoting transparency and collaboration within the AI community. The development of Teuken-7B underscores a commitment to creating AI models that reflect Europe's diversity.
    Starting Price: Free