AudioLM
AudioLM is a pure audio language model that generates high‑fidelity, long‑term coherent speech and piano music by learning from raw audio alone, without requiring any text transcripts or symbolic representations. It represents audio hierarchically using two types of discrete tokens, semantic tokens extracted from a self‑supervised model to capture phonetic or melodic structure and global context, and acoustic tokens from a neural codec to preserve speaker characteristics and fine waveform details, and chains three Transformer stages to predict first semantic tokens for high‑level structure, then coarse and finally fine acoustic tokens for detailed synthesis. The resulting pipeline allows AudioLM to condition on a few seconds of input audio and produce seamless continuations that retain voice identity, prosody, and recording conditions in speech or melody, harmony, and rhythm in music. Human evaluations show that synthetic continuations are nearly indistinguishable from real recordings.
Learn more
Qwen2
Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud.
Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
Learn more
gpt-4o-mini Realtime
The gpt-4o-mini-realtime-preview model is a compact, lower-cost, realtime variant of GPT-4o designed to power speech and text interactions with low latency. It supports both text and audio inputs and outputs, enabling “speech in, speech out” conversational experiences via a persistent WebSocket or WebRTC connection. Unlike larger GPT-4o models, it currently does not support image or structured output modalities, focusing strictly on real-time voice/text use cases. Developers can open a real-time session via the /realtime/sessions endpoint to obtain an ephemeral key, then stream user audio (or text) and receive responses in real time over the same connection. The model is part of the early preview family (version 2024-12-17), intended primarily for testing and feedback rather than full production loads. Usage is subject to rate limits and may evolve during the preview period. Because it is multimodal in audio/text only, it enables use cases such as conversational voice agents.
Learn more
Qwen2-VL
Qwen2-VL is the latest version of the vision language models based on Qwen2 in the Qwen model familities. Compared with Qwen-VL, Qwen2-VL has the capabilities of:
SoTA understanding of images of various resolution & ratio: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.
Understanding videos of 20 min+: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc.
Agent that can operate your mobiles, robots, etc.: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions.
Multilingual Support: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images
Learn more