GPT-4o
GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time (opens in a new window) in a conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models.
Learn more
SmolVLM
SmolVLM-Instruct is a compact, AI-powered multimodal model that combines the capabilities of vision and language processing, designed to handle tasks like image captioning, visual question answering, and multimodal storytelling. It works with both text and image inputs, providing highly efficient results while being optimized for smaller, resource-constrained environments. Built with SmolLM2 as its text decoder and SigLIP as its image encoder, the model offers improved performance for tasks that require integration of both textual and visual information. SmolVLM-Instruct can be fine-tuned for specific applications, offering businesses and developers a versatile tool for creating intelligent, interactive systems that require multimodal inputs.
Learn more
Pixtral Large
Pixtral Large is a 124-billion-parameter open-weight multimodal model developed by Mistral AI, building upon their Mistral Large 2 architecture. It integrates a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, enabling advanced understanding of documents, charts, and natural images while maintaining leading text comprehension capabilities. With a context window of 128,000 tokens, Pixtral Large can process at least 30 high-resolution images simultaneously. The model has demonstrated state-of-the-art performance on benchmarks such as MathVista, DocVQA, and VQAv2, surpassing models like GPT-4o and Gemini-1.5 Pro. Pixtral Large is available under the Mistral Research License for research and educational use, and under the Mistral Commercial License for commercial applications.
Learn more
Qwen
Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way.
Here are some key features of Qwen LLMs:
Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels.
Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify.
Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French.
Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.
Learn more