Alternatives to Qlik Compose

Compare Qlik Compose alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Qlik Compose in 2025. Compare features, ratings, user reviews, pricing, and more from Qlik Compose competitors and alternatives in order to make an informed decision for your business.

  • 1
    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator is a metadata-driven data warehouse automation solution built specifically for teams working within the Microsoft data ecosystem. It helps organizations speed up the delivery of production-ready data products by automating the entire data engineering lifecycle—from ELT pipeline generation and dimensional modeling to historization and semantic model creation for platforms like Microsoft SQL Server, Azure Synapse Analytics, and Microsoft Fabric. By eliminating repetitive manual coding and reducing the need for multiple disconnected tools, AnalyticsCreator helps data teams reduce tool sprawl and enforce consistent modeling standards across projects. The solution includes built-in support for automated documentation, lineage tracking, schema evolution, and CI/CD integration with Azure DevOps and GitHub. Whether you’re working on data marts, data products, or full-scale enterprise data warehouses, AnalyticsCreator allows you to build faster, govern better, and deliver
    Compare vs. Qlik Compose View Software
    Visit Website
  • 2
    Minitab Connect
    The best insights are based on the most complete, most accurate, and most timely data. Minitab Connect empowers data users from across the enterprise with self-serve tools to transform diverse data into a governed network of data pipelines, feed analytics initiatives and foster organization-wide collaboration. Users can effortlessly blend and explore data from databases, cloud and on-premise apps, unstructured data, spreadsheets, and more. Flexible, automated workflows accelerate every step of the data integration process, while powerful data preparation and visualization tools help yield transformative insights. Flexible, intuitive data integration tools let users connect and blend data from a variety of internal and external sources, like data warehouses, data lakes, IoT devices, SaaS applications, cloud storage, spreadsheets, and email.
  • 3
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 4
    Astera Centerprise
    Astera Centerprise is a complete on-premise data integration solution that helps extract, transform, profile, cleanse, and integrate data from disparate sources in a code-free, drag-and-drop environment. The software is designed to cater to enterprise-level data integration needs and is used by Fortune 500 companies, like Wells Fargo, Xerox, HP, and more. Through process orchestration, workflow automation, job scheduling, instant data preview, and more, enterprises can easily get accurate, consolidated data for their day-to-day decision making at the speed of business.
  • 5
    Openbridge

    Openbridge

    Openbridge

    Uncover insights to supercharge sales growth using code-free, fully-automated data pipelines to data lakes or cloud warehouses. A flexible, standards-based platform to unify sales and marketing data for automating insights and smarter growth. Say goodbye to messy, expensive manual data downloads. Always know what you’ll pay and only pay for what you use. Fuel your tools with quick access to analytics-ready data. As certified developers, we only work with secure, official APIs. Get started quickly with data pipelines from popular sources. Pre-built, pre-transformed, and ready-to-go data pipelines. Unlock data from Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and many others. Code-free data ingestion and transformation processes allow teams to realize value from their data quickly and cost-effectively. Data is always securely stored directly in a trusted, customer-owned data destination like Databricks, Amazon Redshift, etc.
    Starting Price: $149 per month
  • 6
    Lyftrondata

    Lyftrondata

    Lyftrondata

    Whether you want to build a governed delta lake, data warehouse, or simply want to migrate from your traditional database to a modern cloud data warehouse, do it all with Lyftrondata. Simply create and manage all of your data workloads on one platform by automatically building your pipeline and warehouse. Analyze it instantly with ANSI SQL, BI/ML tools, and share it without worrying about writing any custom code. Boost the productivity of your data professionals and shorten your time to value. Define, categorize, and find all data sets in one place. Share these data sets with other experts with zero codings and drive data-driven insights. This data sharing ability is perfect for companies that want to store their data once, share it with other experts, and use it multiple times, now and in the future. Define dataset, apply SQL transformations or simply migrate your SQL data processing logic to any cloud data warehouse.
  • 7
    Qlik Data Integration
    The Qlik Data Integration platform for managed data lakes automates the process of providing continuously updated, accurate, and trusted data sets for business analytics. Data engineers have the agility to quickly add new sources and ensure success at every step of the data lake pipeline from real-time data ingestion, to refinement, provisioning, and governance. A simple and universal solution for continually ingesting enterprise data into popular data lakes in real-time. A model-driven approach for quickly designing, building, and managing data lakes on-premises or in the cloud. Deliver a smart enterprise-scale data catalog to securely share all of your derived data sets with business users.
  • 8
    Upsolver

    Upsolver

    Upsolver

    Upsolver makes it incredibly simple to build a governed data lake and to manage, integrate and prepare streaming data for analysis. Define pipelines using only SQL on auto-generated schema-on-read. Easy visual IDE to accelerate building pipelines. Add Upserts and Deletes to data lake tables. Blend streaming and large-scale batch data. Automated schema evolution and reprocessing from previous state. Automatic orchestration of pipelines (no DAGs). Fully-managed execution at scale. Strong consistency guarantee over object storage. Near-zero maintenance overhead for analytics-ready data. Built-in hygiene for data lake tables including columnar formats, partitioning, compaction and vacuuming. 100,000 events per second (billions daily) at low cost. Continuous lock-free compaction to avoid “small files” problem. Parquet-based tables for fast queries.
  • 9
    DataLakeHouse.io

    DataLakeHouse.io

    DataLakeHouse.io

    DataLakeHouse.io (DLH.io) Data Sync provides replication and synchronization of operational systems (on-premise and cloud-based SaaS) data into destinations of their choosing, primarily Cloud Data Warehouses. Built for marketing teams and really any data team at any size organization, DLH.io enables business cases for building single source of truth data repositories, such as dimensional data warehouses, data vault 2.0, and other machine learning workloads. Use cases are technical and functional including: ELT, ETL, Data Warehouse, Pipeline, Analytics, AI & Machine Learning, Data, Marketing, Sales, Retail, FinTech, Restaurant, Manufacturing, Public Sector, and more. DataLakeHouse.io is on a mission to orchestrate data for every organization particularly those desiring to become data-driven, or those that are continuing their data driven strategy journey. DataLakeHouse.io (aka DLH.io) enables hundreds of companies to managed their cloud data warehousing and analytics solutions.
  • 10
    Onehouse

    Onehouse

    Onehouse

    The only fully managed cloud data lakehouse designed to ingest from all your data sources in minutes and support all your query engines at scale, for a fraction of the cost. Ingest from databases and event streams at TB-scale in near real-time, with the simplicity of fully managed pipelines. Query your data with any engine, and support all your use cases including BI, real-time analytics, and AI/ML. Cut your costs by 50% or more compared to cloud data warehouses and ETL tools with simple usage-based pricing. Deploy in minutes without engineering overhead with a fully managed, highly optimized cloud service. Unify your data in a single source of truth and eliminate the need to copy data across data warehouses and lakes. Use the right table format for the job, with omnidirectional interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Quickly configure managed pipelines for database CDC and streaming ingestion.
  • 11
    Dremio

    Dremio

    Dremio

    Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable.
  • 12
    Narrative

    Narrative

    Narrative

    Create new streams of revenue using the data you already collect with your own branded data shop. Narrative is focused on the fundamental principles that make buying and selling data easier, safer, and more strategic. Ensure that the data you access meets your standards, whatever they may be. Know exactly who you’re working with and how the data was collected. Easily access new supply and demand for a more agile and accessible data strategy. Own your data strategy entirely with end-to-end control of inputs and outputs. Our platform simplifies and automates the most time- and labor-intensive aspects of data acquisition, so you can access new data sources in days, not months. With filters, budget controls, and automatic deduplication, you’ll only ever pay for the data you need, and nothing that you don’t.
  • 13
    Data Virtuality

    Data Virtuality

    Data Virtuality

    Connect and centralize data. Transform your existing data landscape into a flexible data powerhouse. Data Virtuality is a data integration platform for instant data access, easy data centralization and data governance. Our Logical Data Warehouse solution combines data virtualization and materialization for the highest possible performance. Build your single source of data truth with a virtual layer on top of your existing data environment for high data quality, data governance, and fast time-to-market. Hosted in the cloud or on-premises. Data Virtuality has 3 modules: Pipes, Pipes Professional, and Logical Data Warehouse. Cut down your development time by up to 80%. Access any data in minutes and automate data workflows using SQL. Use Rapid BI Prototyping for significantly faster time-to-market. Ensure data quality for accurate, complete, and consistent data. Use metadata repositories to improve master data management.
  • 14
    Archon Data Store

    Archon Data Store

    Platform 3 Solutions

    Archon Data Store™ is a powerful and secure open-source based archive lakehouse platform designed to store, manage, and provide insights from massive volumes of data. With its compliance features and minimal footprint, it enables large-scale search, processing, and analysis of structured, unstructured, & semi-structured data across your organization. Archon Data Store combines the best features of data warehouses and data lakes into a single, simplified platform. This unified approach eliminates data silos, streamlining data engineering, analytics, data science, and machine learning workflows. Through metadata centralization, optimized data storage, and distributed computing, Archon Data Store maintains data integrity. Its common approach to data management, security, and governance helps you operate more efficiently and innovate faster. Archon Data Store provides a single platform for archiving and analyzing all your organization's data while delivering operational efficiencies.
  • 15
    BryteFlow

    BryteFlow

    BryteFlow

    BryteFlow builds the most efficient automated environments for analytics ever. It converts Amazon S3 into an awesome analytics platform by leveraging the AWS ecosystem intelligently to deliver data at lightning speeds. It complements AWS Lake Formation and automates the Modern Data Architecture providing performance and productivity. You can completely automate data ingestion with BryteFlow Ingest’s simple point-and-click interface while BryteFlow XL Ingest is great for the initial full ingest for very large datasets. No coding is needed! With BryteFlow Blend you can merge data from varied sources like Oracle, SQL Server, Salesforce and SAP etc. and transform it to make it ready for Analytics and Machine Learning. BryteFlow TruData reconciles the data at the destination with the source continually or at a frequency you select. If data is missing or incomplete you get an alert so you can fix the issue easily.
  • 16
    Talend Data Fabric
    Talend Data Fabric’s suite of cloud services efficiently handles all your integration and integrity challenges — on-premises or in the cloud, any source, any endpoint. Deliver trusted data at the moment you need it — for every user, every time. Ingest and integrate data, applications, files, events and APIs from any source or endpoint to any location, on-premise and in the cloud, easier and faster with an intuitive interface and no coding. Embed quality into data management and guarantee ironclad regulatory compliance with a thoroughly collaborative, pervasive and cohesive approach to data governance. Make the most informed decisions based on high quality, trustworthy data derived from batch and real-time processing and bolstered with market-leading data cleaning and enrichment tools. Get more value from your data by making it available internally and externally. Extensive self-service capabilities make building APIs easy— improve customer engagement.
  • 17
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 18
    QuerySurge
    QuerySurge leverages AI to automate the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Apps/ERPs with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Hadoop & NoSQL Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise App/ERP Testing QuerySurge Features - Projects: Multi-project support - AI: automatically create datas validation tests based on data mappings - Smart Query Wizards: Create tests visually, without writing SQL - Data Quality at Speed: Automate the launch, execution, comparison & see results quickly - Test across 200+ platforms: Data Warehouses, Hadoop & NoSQL lakes, databases, flat files, XML, JSON, BI Reports - DevOps for Data & Continuous Testing: RESTful API with 60+ calls & integration with all mainstream solutions - Data Analytics & Data Intelligence:  Analytics dashboard & reports
  • 19
    Y42

    Y42

    Datos-Intelligence GmbH

    Y42 is the first fully managed Modern DataOps Cloud. It is purpose-built to help companies easily design production-ready data pipelines on top of their Google BigQuery or Snowflake cloud data warehouse. Y42 provides native integration of best-of-breed open-source data tools, comprehensive data governance, and better collaboration for data teams. With Y42, organizations enjoy increased accessibility to data and can make data-driven decisions quickly and efficiently.
  • 20
    BigLake

    BigLake

    Google

    BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.
    Starting Price: $5 per TB
  • 21
    IBM watsonx.data
    Put your data to work, wherever it resides, with the open, hybrid data lakehouse for AI and analytics. Connect your data from anywhere, in any format, and access through a single point of entry with a shared metadata layer. Optimize workloads for price and performance by pairing the right workloads with the right query engine. Embed natural-language semantic search without the need for SQL, so you can unlock generative AI insights faster. Manage and prepare trusted data to improve the relevance and precision of your AI applications. Use all your data, everywhere. With the speed of a data warehouse, the flexibility of a data lake, and special features to support AI, watsonx.data can help you scale AI and analytics across your business. Choose the right engines for your workloads. Flexibly manage cost, performance, and capability with access to multiple open engines including Presto, Presto C++, Spark Milvus, and more.
  • 22
    Talend Pipeline Designer
    Talend Pipeline Designer is a web-based self-service application that takes raw data and makes it analytics-ready. Compose reusable pipelines to extract, improve, and transform data from almost any source, then pass it to your choice of data warehouse destinations, where it can serve as the basis for the dashboards that power your business insights. Build and deploy data pipelines in less time. Design and preview, in batch or streaming, directly in your web browser with an easy, visual UI. Scale with native support for the latest hybrid and multi-cloud technologies, and improve productivity with real-time development and debugging. Live preview lets you instantly and visually diagnose issues with your data. Make better decisions faster with dataset documentation, quality proofing, and promotion. Transform data and improve data quality with built-in functions applied across batch or streaming pipelines, turning data health into an effortless, automated discipline.
  • 23
    Sesame Software

    Sesame Software

    Sesame Software

    Sesame Software specializes in secure, efficient data integration and replication across diverse cloud, hybrid, and on-premise sources. Our patented scalability ensures comprehensive access to critical business data, facilitating a holistic view in the BI tools of your choice. This unified perspective empowers your own robust reporting and analytics, enabling your organization to regain control of your data with confidence. At Sesame Software, we understand what’s at stake when you need to move a massive amount of data between environments quickly—while keeping it protected, maintaining centralized access, and ensuring compliance with regulations. Over the past 23+ years, we’ve helped hundreds of organizations like Proctor & Gamble, Bank of America, and the U.S. government connect, move, store, and protect their data.
  • 24
    Teradata VantageCloud
    Teradata VantageCloud is a comprehensive cloud-based analytics and data platform that allows businesses to unlock the full potential of their data with unparalleled speed, scalability, and operational flexibility. Engineered for enterprise-grade performance, VantageCloud supports seamless AI and machine learning integration, enabling organizations to generate real-time insights and make informed decisions faster. It offers deployment flexibility across public clouds, hybrid environments, or on-premise setups, making it highly adaptable to existing infrastructures. With features like unified data architecture, intelligent governance, and optimized cost-efficiency, VantageCloud helps businesses reduce complexity, drive innovation, and maintain a competitive edge in today’s data-driven world.
  • 25
    Kylo

    Kylo

    Teradata

    Kylo is an open source enterprise-ready data lake management software platform for self-service data ingest and data preparation with integrated metadata management, governance, security and best practices inspired by Think Big's 150+ big data implementation projects. Self-service data ingest with data cleansing, validation, and automatic profiling. Wrangle data with visual sql and an interactive transform through a simple user interface. Search and explore data and metadata, view lineage, and profile statistics. Monitor health of feeds and services in the data lake. Track SLAs and troubleshoot performance. Design batch or streaming pipeline templates in Apache NiFi and register with Kylo to enable user self-service. Organizations can expend significant engineering effort moving data into Hadoop yet struggle to maintain governance and data quality. Kylo dramatically simplifies data ingest by shifting ingest to data owners through a simple guided UI.
  • 26
    IBM Db2 Warehouse
    IBM® Db2® Warehouse provides a client-managed, preconfigured data warehouse that runs in private clouds, virtual private clouds and other container-supported infrastructures. It is designed to be the ideal hybrid cloud solution when you must maintain control of your data but want cloud-like flexibility. With built-in machine learning, automated scaling, built-in analytics, and SMP and MPP processing, Db2 Warehouse enables you to bring AI to your business faster and easier. Deploy a pre-configured data warehouse in minutes on your supported infrastructure of choice with elastic scaling for easier updates and upgrades. Apply in-database analytics where the data resides, allowing enterprise AI to operate faster and more efficiently. Write your application once and move that workload to the right location, whether public cloud, private cloud or on-premises — with minimal or no changes required.
  • 27
    Oracle Cloud Infrastructure Data Lakehouse
    A data lakehouse is a modern, open architecture that enables you to store, understand, and analyze all your data. It combines the power and richness of data warehouses with the breadth and flexibility of the most popular open source data technologies you use today. A data lakehouse can be built from the ground up on Oracle Cloud Infrastructure (OCI) to work with the latest AI frameworks and prebuilt AI services like Oracle’s language service. Data Flow is a serverless Spark service that enables our customers to focus on their Spark workloads with zero infrastructure concepts. Oracle customers want to build advanced, machine learning-based analytics over their Oracle SaaS data, or any SaaS data. Our easy- to-use data integration connectors for Oracle SaaS, make creating a lakehouse to analyze all data with your SaaS data easy and reduces time to solution.
  • 28
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • 29
    FutureAnalytica

    FutureAnalytica

    FutureAnalytica

    Ours is the world’s first & only end-to-end platform for all your AI-powered innovation needs — right from data cleansing & structuring, to creating & deploying advanced data-science models, to infusing advanced analytics algorithms with built-in Recommendation AI, to deducing the outcomes with easy-to-deduce visualization dashboards, as well as Explainable AI to backtrack how the outcomes were derived, our no-code AI platform can do it all! Our platform offers a holistic, seamless data science experience. With key features like a robust Data Lakehouse, a unique AI Studio, a comprehensive AI Marketplace, and a world-class data-science support team (on a need basis), FutureAnalytica is geared to reduce your time, efforts & costs across your data-science & AI journey. Initiate discussions with the leadership, followed by a quick technology assessment in 1–3 days. Build ready-to-integrate AI solutions using FA's fully automated data science & AI platform in 10–18 days.
  • 30
    VeloDB

    VeloDB

    VeloDB

    Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools.
  • 31
    CData Sync

    CData Sync

    CData Software

    CData Sync is a universal data pipeline that delivers automated continuous replication between hundreds of SaaS applications & cloud data sources and any major database or data warehouse, on-premise or in the cloud. Replicate data from hundreds of cloud data sources to popular database destinations, such as SQL Server, Redshift, S3, Snowflake, BigQuery, and more. Configuring replication is easy: login, select the data tables to replicate, and select a replication interval. Done. CData Sync extracts data iteratively, causing minimal impact on operational systems by only querying and updating data that has been added or changed since the last update. CData Sync offers the utmost flexibility across full and partial replication scenarios and ensures that critical data is stored safely in your database of choice. Download a 30-day free trial of the Sync application or request more information at www.cdata.com/sync
  • 32
    Amazon Security Lake
    Amazon Security Lake automatically centralizes security data from AWS environments, SaaS providers, on-premises, and cloud sources into a purpose-built data lake stored in your account. With Security Lake, you can get a more complete understanding of your security data across your entire organization. You can also improve the protection of your workloads, applications, and data. Security Lake has adopted the Open Cybersecurity Schema Framework (OCSF), an open standard. With OCSF support, the service normalizes and combines security data from AWS and a broad range of enterprise security data sources. Use your preferred analytics tools to analyze your security data while retaining complete control and ownership over that data. Centralize data visibility from cloud and on-premises sources across your accounts and AWS Regions. Streamline your data management at scale by normalizing your security data to an open standard.
    Starting Price: $0.75 per GB per month
  • 33
    Dimodelo

    Dimodelo

    Dimodelo

    Stay focused on delivering valuable and impressive reporting, analytics and insights, instead of being stuck in data warehouse code. Don’t let your data warehouse become a jumble of 100’s of hard-to-maintain pipelines, notebooks, stored procedures, tables. and views etc. Dimodelo DW Studio dramatically reduces the effort required to design, build, deploy and run a data warehouse. Design, generate and deploy a data warehouse targeting Azure Synapse Analytics. Generating a best practice architecture utilizing Azure Data Lake, Polybase and Azure Synapse Analytics, Dimodelo Data Warehouse Studio delivers a high-performance, modern data warehouse in the cloud. Utilizing parallel bulk loads and in-memory tables, Dimodelo Data Warehouse Studio generates a best practice architecture that delivers a high-performance, modern data warehouse in the cloud.
    Starting Price: $899 per month
  • 34
    beVault

    beVault

    beVault

    beVault is a comprehensive data management automation platform designed to address the challenges of evolving business requirements and data structures. It enables rapid creation and deployment of new business cases, accelerating data warehouse automation processes by up to five times, thereby reducing time-to-market and maintaining business agility. The platform fosters seamless collaboration between IT and business teams through its business-centric, user-friendly interface, allowing for the co-construction of data models without technical barriers. As an all-in-one, low-code solution, beVault minimizes the need for expensive resources and multiple licenses, consolidating data management tools to reduce implementation and operational costs. Key features include an evolutive business-oriented model that scales with data needs, an embedded data quality framework to ensure high standards, and a hybrid architecture offering on-premises, cloud, or hybrid deployment options.
  • 35
    Blendo

    Blendo

    Blendo

    Blendo is the leading ETL and ELT data integration tool to dramatically simplify how you connect data sources to databases. With natively built data connection types supported, Blendo makes the extract, load, transform (ETL) process a breeze. Automate data management and data transformation to get to BI insights faster. Data analysis doesn’t have to be a data warehousing, data management, or data integration problem. Automate and sync your data from any SaaS application into your data warehouse. Just use ready-made connectors to connect to any data source, simple as a login process, and your data will start syncing right away. No more integrations to built, data to export or scripts to build. Save hours and unlock insights into your business. Accelerate your exploration to insights time, with reliable data, analytics-ready tables and schemas, created and optimized for analysis with any BI software.
  • 36
    WhereScape

    WhereScape

    WhereScape Software

    WhereScape helps IT organizations of all sizes leverage automation to design, develop, deploy, and operate data infrastructure faster. More than 700 customers worldwide rely on WhereScape automation to eliminate hand-coding and other repetitive, time-intensive aspects of data infrastructure projects to deliver data warehouses, vaults, lakes and marts in days or weeks rather than in months or years. From data warehouses and vaults to data lakes and marts, deliver data infrastructure and big data integration fast. Quickly and easily plan, model and design all types of data infrastructure projects. Use sophisticated data discovery and profiling capabilities to bulletproof design and rapid prototyping to collaborate earlier with business users. Fast-track the development, deployment and operation of your data infrastructure projects. Dramatically reduce the delivery time, effort, cost and risk of new projects, and better position projects for future business change.
  • 37
    Panoply

    Panoply

    SQream

    Panoply brings together a managed data warehouse with included, pre-built ELT data connectors, making it the easiest way to store, sync, and access all your business data. Our cloud data warehouse (built on Redshift or BigQuery), along with built-in data integrations to all major CRMs, databases, file systems, ad networks, web analytics tools, and more, will have you accessing usable data in less time, with a lower total cost of ownership. One platform with one easy price is all you need to get your business data up and running today. Panoply gives you unlimited access to data sources with prebuilt Snap Connectors and a Flex Connector that can bring in data from nearly any RestAPI. Panoply can be set up in minutes, requires zero ongoing maintenance, and provides online support including access to experienced data architects.
    Starting Price: $299 per month
  • 38
    SelectDB

    SelectDB

    SelectDB

    SelectDB is a modern data warehouse based on Apache Doris, which supports rapid query analysis on large-scale real-time data. From Clickhouse to Apache Doris, to achieve the separation of the lake warehouse and upgrade to the lake warehouse. The fast-hand OLAP system carries nearly 1 billion query requests every day to provide data services for multiple scenes. Due to the problems of storage redundancy, resource seizure, complicated governance, and difficulty in querying and adjustment, the original lake warehouse separation architecture was decided to introduce Apache Doris lake warehouse, combined with Doris's materialized view rewriting ability and automated services, to achieve high-performance data query and flexible data governance. Write real-time data in seconds, and synchronize flow data from databases and data streams. Data storage engine for real-time update, real-time addition, and real-time pre-polymerization.
    Starting Price: $0.22 per hour
  • 39
    Azure Data Lake
    Azure Data Lake includes all the capabilities required to make it easy for developers, data scientists, and analysts to store data of any size, shape, and speed, and do all types of processing and analytics across platforms and languages. It removes the complexities of ingesting and storing all of your data while making it faster to get up and running with batch, streaming, and interactive analytics. Azure Data Lake works with existing IT investments for identity, management, and security for simplified data management and governance. It also integrates seamlessly with operational stores and data warehouses so you can extend current data applications. We’ve drawn on the experience of working with enterprise customers and running some of the largest scale processing and analytics in the world for Microsoft businesses like Office 365, Xbox Live, Azure, Windows, Bing, and Skype. Azure Data Lake solves many of the productivity and scalability challenges that prevent you from maximizing the
  • 40
    Data Lakes on AWS
    Many Amazon Web Services (AWS) customers require a data storage and analytics solution that offers more agility and flexibility than traditional data management systems. A data lake is a new and increasingly popular way to store and analyze data because it allows companies to manage multiple data types from a wide variety of sources, and store this data, structured and unstructured, in a centralized repository. The AWS Cloud provides many of the building blocks required to help customers implement a secure, flexible, and cost-effective data lake. These include AWS managed services that help ingest, store, find, process, and analyze both structured and unstructured data. To support our customers as they build data lakes, AWS offers the data lake solution, which is an automated reference implementation that deploys a highly available, cost-effective data lake architecture on the AWS Cloud along with a user-friendly console for searching and requesting datasets.
  • 41
    Etleap

    Etleap

    Etleap

    Etleap was built from the ground up on AWS to support Redshift and snowflake data warehouses and S3/Glue data lakes. Their solution simplifies and automates ETL by offering fully-managed ETL-as-a-service. Etleap's data wrangler and modeling tools let users control how data is transformed for analysis, without writing any code. Etleap monitors and maintains data pipelines for availability and completeness, eliminating the need for constant maintenance, and centralizes data from 50+ disparate sources and silos into your data warehouse or data lake.
  • 42
    Lentiq

    Lentiq

    Lentiq

    Lentiq is a collaborative data lake as a service environment that’s built to enable small teams to do big things. Quickly run data science, machine learning and data analysis at scale in the cloud of your choice. With Lentiq, your teams can ingest data in real time and then process, clean and share it. From there, Lentiq makes it possible to build, train and share models internally. Simply put, data teams can collaborate with Lentiq and innovate with no restrictions. Data lakes are storage and processing environments, which provide ML, ETL, schema-on-read querying capabilities and so much more. Are you working on some data science magic? You definitely need a data lake. In the Post-Hadoop era, the big, centralized data lake is a thing of the past. With Lentiq, we use data pools, which are multi-cloud, interconnected mini-data lakes. They work together to give you a stable, secure and fast data science environment.
  • 43
    Datametica

    Datametica

    Datametica

    At Datametica, our birds with unprecedented capabilities help eliminate business risks, cost, time, frustration, and anxiety from the entire process of data warehouse migration to the cloud. Migration of existing data warehouse, data lake, ETL, and Enterprise business intelligence to the cloud environment of your choice using Datametica automated product suite. Architecting an end-to-end migration strategy, with workload discovery, assessment, planning, and cloud optimization. Starting from discovery and assessment of your existing data warehouse to planning the migration strategy – Eagle gives clarity on what’s needed to be migrated and in what sequence, how the process can be streamlined, and what are the timelines and costs. The holistic view of the workloads and planning reduces the migration risk without impacting the business.
  • 44
    Infor Data Lake
    Solving today’s enterprise and industry challenges requires big data. The ability to capture data from across your enterprise—whether generated by disparate applications, people, or IoT infrastructure–offers tremendous potential. Infor’s Data Lake tools deliver schema-on-read intelligence along with a fast, flexible data consumption framework to enable new ways of making key decisions. With leveraged access to your entire Infor ecosystem, you can start capturing and delivering big data to power your next generation analytics and machine learning strategies. Infinitely scalable, the Infor Data Lake provides a unified repository for capturing all of your enterprise data. Grow with your insights and investments, ingest more content for better informed decisions, improve your analytics profiles, and provide rich data sets to build more powerful machine learning processes.
  • 45
    Data Flow Manager
    Data Flow Manager (DFM) is a purpose-built tool to deploy and promote Apache NiFi data flows within minutes – no need for NiFi UI and controller services, 100% on-premises with zero cloud dependency. Designed for organizations prioritizing data sovereignty, DFM eliminates vendor lock-in and cloud exposure. With a simple pay-per-node model, you can run unlimited NiFi data flows without paying for extra CPUs. DFM automates and accelerates deployment across environments with features like NiFi data flow deployment, scheduling, and promotion in just a few minutes. Role-Based Access Control (RBAC), complete audit logging, and built-in performance analytics give teams control and visibility over their data operations. DFM’s AI-powered NiFi Data Flow Creation Assistant helps teams build better NiFi data flows, faster. Its structure and performance analysis tools ensure your NiFi flows are optimized from the start. Backed by 24x7 NiFi expert support and a 99.99% uptime guarantee,
  • 46
    NewEvol

    NewEvol

    Sattrix Software Solutions

    NewEvol is the technologically advanced product suite that uses data science for advanced analytics to identify abnormalities in the data itself. Supported by visualization, rule-based alerting, automation, and responses, NewEvol becomes a more compiling proposition for any small to large enterprise. Machine Learning (ML) and security intelligence feed makes NewEvol a more robust system to cater to challenging business demands. NewEvol Data Lake is super easy to deploy and manage. You don’t require a team of expert data administrators. As your company’s data need grows, it automatically scales and reallocates resources accordingly. NewEvol Data Lake has extensive data ingestion to perform enrichment across multiple sources. It helps you ingest data from multiple formats such as delimited, JSON, XML, PCAP, Syslog, etc. It offers enrichment with the help of a best-of-breed contextually aware event analytics model.
  • 47
    Cribl Lake
    Storage that doesn’t lock data in. Get up and running fast with a managed data lake. Easily store, access, and retrieve data, without being a data expert. Cribl Lake keeps you from drowning in data. Easily store, manage, enforce policy on, and access data when you need. Dive into the future with open formats and unified retention, security, and access control policies. Let Cribl handle the heavy lifting so data can be usable and valuable to the teams and tools that need it. Minutes, not months to get up and running with Cribl Lake. Zero configuration with automated provisioning and out-of-the-box integrations. Streamline workflows with Stream and Edge for powerful data ingestion and routing. Cribl Search unifies queries no matter where data is stored, so you can get value from data without delays. Take an easy path to collect and store data for long-term retention. Comply with legal and business requirements for data retention by defining specific retention periods.
  • 48
    Dataform

    Dataform

    Google

    Dataform enables data analysts and data engineers to develop and operationalize scalable data transformation pipelines in BigQuery using only SQL from a single, unified environment. Its open source core language lets teams define table schemas, configure dependencies, add column descriptions, and set up data quality assertions within a shared code repository while applying software development best practices, version control, environments, testing, and documentation. A fully managed, serverless orchestration layer automatically handles workflow dependencies, tracks lineage, and executes SQL pipelines on demand or via schedules in Cloud Composer, Workflows, BigQuery Studio, or third-party services. In the browser-based development interface, users get real-time error feedback, visualize dependency graphs, connect to GitHub or GitLab for commits and code reviews, and launch production-grade pipelines in minutes without leaving BigQuery Studio.
  • 49
    Sprinkle

    Sprinkle

    Sprinkle Data

    Businesses today need to adapt faster with ever evolving customer requirements and preferences. Sprinkle helps you manage these expectations with agile analytics platform that meets changing needs with ease. We started Sprinkle with the goal to simplify end to end data analytics for organisations, so that they don’t worry about integrating data from various sources, changing schemas and managing pipelines. We built a platform that empowers everyone in the organisation to browse and dig deeper into the data without any technical background. Our team has worked extensively with data while building analytics systems for companies like Flipkart, Inmobi, and Yahoo. These companies succeed by maintaining dedicated teams of data scientists, business analyst and engineers churning out reports and insights. We realized that most organizations struggle for simple self-serve reporting and data exploration. So we set out to build solution that will help all companies leverage data.
    Starting Price: $499 per month
  • 50
    Google Cloud Composer
    Cloud Composer's managed nature and Apache Airflow compatibility allows you to focus on authoring, scheduling, and monitoring your workflows as opposed to provisioning resources. End-to-end integration with Google Cloud products including BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform gives users the freedom to fully orchestrate their pipeline. Author, schedule, and monitor your workflows through a single orchestration tool—whether your pipeline lives on-premises, in multiple clouds, or fully within Google Cloud. Ease your transition to the cloud or maintain a hybrid data environment by orchestrating workflows that cross between on-premises and the public cloud. Create workflows that connect data, processing, and services across clouds to give you a unified data environment.
    Starting Price: $0.074 per vCPU hour