Alternatives to Protégé
Compare Protégé alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Protégé in 2025. Compare features, ratings, user reviews, pricing, and more from Protégé competitors and alternatives in order to make an informed decision for your business.
-
1
Google AI Studio
Google
Google AI Studio is a comprehensive, web-based development environment that democratizes access to Google's cutting-edge AI models, notably the Gemini family, enabling a broad spectrum of users to explore and build innovative applications. This platform facilitates rapid prototyping by providing an intuitive interface for prompt engineering, allowing developers to meticulously craft and refine their interactions with AI. Beyond basic experimentation, AI Studio supports the seamless integration of AI capabilities into diverse projects, from simple chatbots to complex data analysis tools. Users can rigorously test different prompts, observe model behaviors, and iteratively refine their AI-driven solutions within a collaborative and user-friendly environment. This empowers developers to push the boundaries of AI application development, fostering creativity and accelerating the realization of AI-powered solutions. -
2
RunPod
RunPod
RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure. -
3
Dataloop AI
Dataloop AI
Manage unstructured data and pipelines to develop AI solutions at amazing speed. Enterprise-grade data platform for vision AI. Dataloop is a one-stop shop for building and deploying powerful computer vision pipelines data labeling, automating data ops, customizing production pipelines and weaving the human-in-the-loop for data validation. Our vision is to make machine learning-based systems accessible, affordable and scalable for all. Explore and analyze vast quantities of unstructured data from diverse sources. Rely on automated preprocessing and embeddings to identify similarities and find the data you need. Curate, version, clean, and route your data to wherever it’s needed to create exceptional AI applications. -
4
Snowflake
Snowflake
Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.Starting Price: $2 compute/month -
5
TensorFlow
TensorFlow
An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.Starting Price: Free -
6
Vertex AI Notebooks
Google
Vertex AI Notebooks is a fully managed, scalable solution from Google Cloud that accelerates machine learning (ML) development. It provides a seamless, interactive environment for data scientists and developers to explore data, prototype models, and collaborate in real-time. With integration into Google Cloud’s vast data and ML tools, Vertex AI Notebooks supports rapid prototyping, automated workflows, and deployment, making it easier to scale ML operations. The platform’s support for both Colab Enterprise and Vertex AI Workbench ensures a flexible and secure environment for diverse enterprise needs.Starting Price: $10 per GB -
7
Synthesis AI
Synthesis AI
A synthetic data platform for ML engineers to enable the development of more capable AI models. Simple APIs provide on-demand generation of perfectly-labeled, diverse, and photoreal images. Highly-scalable cloud-based generation platform delivers millions of perfectly labeled images. On-demand data enables new data-centric approaches to develop more performant models. An expanded set of pixel-perfect labels including segmentation maps, dense 2D/3D landmarks, depth maps, surface normals, and much more. Rapidly design, test, and refine your products before building hardware. Prototype different imaging modalities, camera placements, and lens types to optimize your system. Reduce bias in your models associated with misbalanced data sets while preserving privacy. Ensure equal representation across identities, facial attributes, pose, camera, lighting, and much more. We have worked with world-class customers across many use cases. -
8
Vanillatech Labs
Vanillatech
We developed a neuro-bio inspired generic deep learning algorithm that works as simple as an intelligence test. It automatically detects and predicts patterns and allows you to build intelligent apps easily. Our software is easy to use because it offers a straightforward and well defined REST api which allows you to build intelligent apps from any environment. This way you can connect e.g. JavaScript applications, spreadsheets or even your online broker. Our service is free to use for development and testing purposes. Our community edition is open source licensed under SSPL. Vanillatech ML Workstation is the ready-to-use software which runs on your local machine. If you require adaptions or support please contact us for an individual offer. -
9
Metal
Metal
Metal is your production-ready, fully-managed, ML retrieval platform. Use Metal to find meaning in your unstructured data with embeddings. Metal is a managed service that allows you to build AI products without the hassle of managing infrastructure. Integrations with OpenAI, CLIP, and more. Easily process & chunk your documents. Take advantage of our system in production. Easily plug into the MetalRetriever. Simple /search endpoint for running ANN queries. Get started with a free account. Metal API Keys to use our API & SDKs. With your API Key, you can use authenticate by populating the headers. Learn how to use our Typescript SDK to implement Metal into your application. Although we love TypeScript, you can of course utilize this library in JavaScript. Mechanism to fine-tune your spp programmatically. Indexed vector database of your embeddings. Resources that represent your specific ML use-case.Starting Price: $25 per month -
10
Orange
University of Ljubljana
Open source machine learning and data visualization. Build data analysis workflows visually, with a large, diverse toolbox. Perform simple data analysis with clever data visualization. Explore statistical distributions, box plots and scatter plots, or dive deeper with decision trees, hierarchical clustering, heatmaps, MDS and linear projections. Even your multidimensional data can become sensible in 2D, especially with clever attribute ranking and selections. Interactive data exploration for rapid qualitative analysis with clean visualizations. Graphic user interface allows you to focus on exploratory data analysis instead of coding, while clever defaults make fast prototyping of a data analysis workflow extremely easy. Place widgets on the canvas, connect them, load your datasets and harvest the insight! When teaching data mining, we like to illustrate rather than only explain. And Orange is great at that. -
11
Weights & Biases
Weights & Biases
Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence. -
12
Strong Analytics
Strong Analytics
Our platforms provide a trusted foundation upon which to design, build, and deploy custom machine learning and artificial intelligence solutions. Build next-best-action applications that learn, adapt, and optimize using reinforcement-learning based algorithms. Custom, continuously-improving deep learning vision models to solve your unique challenges. Predict the future using state-of-the-art forecasts. Enable smarter decisions throughout your organization with cloud based tools to monitor and analyze. The process of taking a modern machine learning application from research and ad-hoc code to a robust, scalable platform remains a key challenge for experienced data science and engineering teams. Strong ML simplifies this process with a complete suite of tools to manage, deploy, and monitor your machine learning applications. -
13
Hugging Face
Hugging Face
Hugging Face is a leading platform for AI and machine learning, offering a vast hub for models, datasets, and tools for natural language processing (NLP) and beyond. The platform supports a wide range of applications, from text, image, and audio to 3D data analysis. Hugging Face fosters collaboration among researchers, developers, and companies by providing open-source tools like Transformers, Diffusers, and Tokenizers. It enables users to build, share, and access pre-trained models, accelerating AI development for a variety of industries.Starting Price: $9 per month -
14
MLflow
MLflow
MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects. -
15
Build your deep learning project quickly on Google Cloud: Quickly prototype with a portable and consistent environment for developing, testing, and deploying your AI applications with Deep Learning Containers. These Docker images use popular frameworks and are performance optimized, compatibility tested, and ready to deploy. Deep Learning Containers provide a consistent environment across Google Cloud services, making it easy to scale in the cloud or shift from on-premises. You have the flexibility to deploy on Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm.
-
16
ONNX
ONNX
ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine. ONNX makes it easier to access hardware optimizations. Use ONNX-compatible runtimes and libraries designed to maximize performance across hardware. Our active community thrives under our open governance structure, which provides transparency and inclusion. We encourage you to engage and contribute. -
17
Replicate
Replicate
Replicate is a platform that enables developers and businesses to run, fine-tune, and deploy machine learning models at scale with minimal effort. It offers an easy-to-use API that allows users to generate images, videos, speech, music, and text using thousands of community-contributed models. Users can fine-tune existing models with their own data to create custom versions tailored to specific tasks. Replicate supports deploying custom models using its open-source tool Cog, which handles packaging, API generation, and scalable cloud deployment. The platform automatically scales compute resources based on demand, charging users only for the compute time they consume. With robust logging, monitoring, and a large model library, Replicate aims to simplify the complexities of production ML infrastructure.Starting Price: Free -
18
Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
-
19
IBM Watson OpenScale is an enterprise-scale environment for AI-powered applications that provides businesses with visibility into how AI is created and used, and how ROI is delivered. IBM Watson OpenScale is an enterprise-scale environment for AI-powered applications that provides companies with visibility into how AI is created and used, and how ROI is delivered at the business level. Create and develop trusted AI using the IDE of your choice and power your business and support teams with data insights into how AI affects business results. Capture payload data and deployment output to monitor the ongoing health of business applications through operations dashboards, alerts, and access to open data warehouse for custom reporting. Automatically detects when artificial intelligence systems deliver the wrong results at run time, based on business-determined fairness attributes. Mitigate bias through smart recommendations of new data for new model training.
-
20
Interplay
Iterate.ai
Interplay Platform is a patented low-code platform with 475 pre-built connectors (enterprise, AI, IoT, Startup Technologies). It's used as middleware and as a rapid app building platform by big companies like Circle K, Ulta Beauty, and many others. As middleware, it operates Pay-by-Plate (frictionless payments at the gas pump) in Europe, Weapons Detection (to predict robberies), AI-based Chat, online personalization tools, low price guarantee tools, computer vision applications such as damage estimation, and much more. It also helps companies to go to market with their digital solutions 10X to 17X faster than in old ways. -
21
Tencent Cloud TI Platform
Tencent
Tencent Cloud TI Platform is a one-stop machine learning service platform designed for AI engineers. It empowers AI development throughout the entire process from data preprocessing to model building, model training, model evaluation, and model service. Preconfigured with diverse algorithm components, it supports multiple algorithm frameworks to adapt to different AI use cases. Tencent Cloud TI Platform delivers a one-stop machine learning experience that covers a complete and closed-loop workflow from data preprocessing to model building, model training, and model evaluation. With Tencent Cloud TI Platform, even AI beginners can have their models constructed automatically, making it much easier to complete the entire training process. Tencent Cloud TI Platform's auto-tuning tool can also further enhance the efficiency of parameter tuning. Tencent Cloud TI Platform allows CPU/GPU resources to elastically respond to different computing power needs with flexible billing modes. -
22
AI Squared
AI Squared
Empower data scientists and application developers to collaborate on ML projects. Build, load, optimize and test models and integrations before publishing to end-users for integration into live applications. Reduce data science workload and improve decision-making by storing and sharing ML models across the organization. Publish updates to automatically push changes to models in production. Drive efficiency by instantly providing ML-powered insights within any web-based business application. Our self-service, drag-and-drop browser extension enables analysts and business users to integrate models into any web-based application with zero code. -
23
Descartes Labs
Descartes Labs
The Descartes Labs Platform is designed to answer some of the world’s most complex and pressing geospatial analytics questions. Our customers use the platform to build algorithms and models that transform their businesses quickly, efficiently, and cost-effectively. By giving data scientists and their line-of-business colleagues the best geospatial data and modeling tools in one package, we help turn AI into a core competency. Data science teams can use our scaling infrastructure to design models faster than ever, using our massive data archive or their own. Customers rely on our cloud-based platform to quickly and securely scale computer vision, statistical, and machine learning models to inform business decisions with powerful raster-based analytics. Our extensive API documentation, tutorials, guides and demos provide a deep knowledge base for users allowing them to quickly deploy high-value applications across diverse industries. -
24
FARO Sphere XG
FARO Technologies, Inc.
FARO Sphere XG is a cloud-based digital reality platform that provides its users a centralized, collaborative experience across the company’s reality capture and 3D modeling applications. When paired with the Stream mobile app, Sphere XG enables faster 3D data capture, processing and project management from anywhere in the world. Sphere XG systematizes every activity while remaining intuitive to navigate, allowing users the ability to better organize their 3D scans and 360° photos alongside 3D models and manage that data across diverse teams around the world. With Sphere XG, 3D point clouds and 360° photo documentation can be viewed and shared all in one place, aligned to a floorplan and viewable over time. Ideal for 4D construction progress management where the ability to compare elements over time is critical, project managers and VDC managers can better democratize data and eliminate the need to use two platforms for their reality capture needs. -
25
Gretel
Gretel.ai
Privacy engineering tools delivered to you as APIs. Synthesize and transform data in minutes. Build trust with your users and community. Gretel’s APIs grant immediate access to creating anonymized or synthetic datasets so you can work safely with data while preserving privacy. Keeping the pace with development velocity requires faster access to data. Gretel is accelerating access to data with data privacy tools that bypass blockers and fuel Machine Learning and AI applications. Keep your data contained by running Gretel containers in your own environment or scale out workloads to the cloud in seconds with Gretel Cloud runners. Using our cloud GPUs makes it radically more effortless for developers to train and generate synthetic data. Scale workloads automatically with no infrastructure to set up and manage. Invite team members to collaborate on cloud projects and share data across teams. -
26
Alpa
Alpa
Alpa aims to automate large-scale distributed training and serving with just a few lines of code. Alpa was initially developed by folks in the Sky Lab, UC Berkeley. Some advanced techniques used in Alpa have been written in a paper published in OSDI'2022. Alpa community is growing with new contributors from Google. A language model is a probability distribution over sequences of words. It predicts the next word based on all the previous words. It is useful for a variety of AI applications, such the auto-completion in your email or chatbot service. For more information, check out the language model wikipedia page. GPT-3 is very large language model, with 175 billion parameters, that uses deep learning to produce human-like text. Many researchers and news articles described GPT-3 as "one of the most interesting and important AI systems ever produced". GPT-3 is gradually being used as a backbone in the latest NLP research and applications.Starting Price: Free -
27
SensiML Analytics Studio
SensiML
Sensiml analytics toolkit. Create smart iot sensor devices rapidly reduce data science complexity. Create compact algorithms that execute on tiny IoT endpoints, not in the cloud. Collect accurate, traceable, version controlled datasets. Utilize advanced AutoML code-gen to quickly produce autonomous working device code. Choose your interface, level of AI expertise, and retain full access to every aspect of your algorithm. Build edge tuning models that that customize behavior as they see more data. SensiML Analytics Toolkit suite automates each step of the process for creating optimized AI IoT sensor recognition code. The overall workflow uses a growing library of advanced ML and AI algorithms to generate code that can learn from new data either the development phase or once deployed. Non-invasive, rapid disease screening applications utilizing intelligent classification of one or more bio-sensing inputs are critical tools for healthcare decision support. -
28
Paravision
Paravision
Paravision provides a computer vision developer platform that powers face recognition applications serving mission-critical use cases. Our SDK's and API's enable comprehensive security and frictionless experiences and are powered by an industry-leading feature set. Our SDKs and Vision AI engines can be integrated into modern, secure infrastructure. We also build advanced solutions for identity-based security threats, like spoof attempts and deepfakes. Utilizing the most advanced AI frameworks and partnered with leading providers of hardware accelerators for AI and deep learning, Paravision delivers speed, scalability, and responsiveness while lowering operating costs. Paravision is proud to be a US-based leader in Vision AI. Whether in technical partnership, working through end-user challenges, or collaborating on market strategy, we strive to be dynamic, responsive, and focused on delivering excellence. -
29
Edge Impulse
Edge Impulse
Build advanced embedded machine learning applications without a PhD. Collect sensor, audio, or camera data directly from devices, files, or cloud integrations to build custom datasets. Leverage automatic labeling tools from object detection to audio segmentation. Set up and run reusable scripted operations that transform your input data on large sets of data in parallel by using our cloud infrastructure. Integrate custom data sources, CI/CD tools, and deployment pipelines with open APIs. Accelerate custom ML pipeline development with ready-to-use DSP and ML algorithms. Make hardware decisions based on device performance and flash/RAM every step of the way. Customize DSP feature extraction algorithms and create custom machine learning models with Keras APIs. Fine-tune your production model with visualized insights on datasets, model performance, and memory. Find the perfect balance between DSP configuration and model architecture, all budgeted against memory and latency constraints. -
30
ZenML
ZenML
Simplify your MLOps pipelines. Manage, deploy, and scale on any infrastructure with ZenML. ZenML is completely free and open-source. See the magic with just two simple commands. Set up ZenML in a matter of minutes, and start with all the tools you already use. ZenML standard interfaces ensure that your tools work together seamlessly. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code. Write portable ML code and switch from experimentation to production in seconds. Manage all your favorite MLOps tools in one place with ZenML's plug-and-play integrations. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.Starting Price: Free -
31
Amazon SageMaker Edge
Amazon
The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console. -
32
MLlib
Apache Software Foundation
Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem. -
33
Ray
Anyscale
Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.Starting Price: Free -
34
Vaex
Vaex
At Vaex.io we aim to democratize big data and make it available to anyone, on any machine, at any scale. Cut development time by 80%, your prototype is your solution. Create automatic pipelines for any model. Empower your data scientists. Turn any laptop into a big data powerhouse, no clusters, no engineers. We provide reliable and fast data driven solutions. With our state-of-the-art technology we build and deploy machine learning models faster than anyone on the market. Turn your data scientist into big data engineers. We provide comprehensive training of your employees, enabling you to take full advantage of our technology. Combines memory mapping, a sophisticated expression system, and fast out-of-core algorithms. Efficiently visualize and explore big datasets, and build machine learning models on a single machine. -
35
Shaip
Shaip
Shaip offers end-to-end generative AI services, specializing in high-quality data collection and annotation across multiple data types including text, audio, images, and video. The platform sources and curates diverse datasets from over 60 countries, supporting AI and machine learning projects globally. Shaip provides precise data labeling services with domain experts ensuring accuracy in tasks like image segmentation and object detection. It also focuses on healthcare data, delivering vast repositories of physician audio, electronic health records, and medical images for AI training. With multilingual audio datasets covering 60+ languages and dialects, Shaip enhances conversational AI development. The company ensures data privacy through de-identification services, protecting sensitive information while maintaining data utility. -
36
Towhee
Towhee
You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.Starting Price: Free -
37
Launchable
Launchable
You can have the best developers in the world, but every test is making them slower. 80% of your software tests are pointless. The problem is you don't know which 80%. We find the right 20% using your data so that you can ship faster. We have shrink-wrapped predictive test selection, a machine learning-based approach being used at companies like Facebook so that it can be used by any company. We support multiple languages, test runners, and CI systems. Just bring Git to the table. Launchable uses machine learning to analyze your test failures and source code. It doesn't rely on code syntax analysis. This means it's trivial for Launchable to add support for almost any file-based programming language. It also means we can scale across teams and projects with different languages and tools. Out of the box, we currently support Python, Ruby, Java, JavaScript, Go, C, and C++, and we regularly add support for new languages. -
38
Huawei Cloud ModelArts
Huawei Cloud
ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration. -
39
Google Cloud Datalab
Google
An easy-to-use interactive tool for data exploration, analysis, visualization, and machine learning. Cloud Datalab is a powerful interactive tool created to explore, analyze, transform, and visualize data and build machine learning models on Google Cloud Platform. It runs on Compute Engine and connects to multiple cloud services easily so you can focus on your data science tasks. Cloud Datalab is built on Jupyter (formerly IPython), which boasts a thriving ecosystem of modules and a robust knowledge base. Cloud Datalab enables analysis of your data on BigQuery, AI Platform, Compute Engine, and Cloud Storage using Python, SQL, and JavaScript (for BigQuery user-defined functions). Whether you're analyzing megabytes or terabytes, Cloud Datalab has you covered. Query terabytes of data in BigQuery, run local analysis on sampled data, and run training jobs on terabytes of data in AI Platform seamlessly. -
40
SANCARE
SANCARE
SANCARE is a start-up specializing in Machine Learning applied to hospital data. We collaborate with some of the best scientists in the field. SANCARE provides Medical Information Departments with an ergonomic and intuitive interface, promoting rapid adoption. The user has access to all the documents that constitute the computerized patient record. A true production tool, each step of the coding process is traced for external checks. Machine learning makes it possible to develop powerful predictive models from large volumes of data, and to take into account the notion of context, which is not possible for rule engines or semantic analysis engines. It is therefore possible to automate complex decision-making processes or to detect weak signals ignored by humans. The SANCARE software machine learning engine is based on a probabilistic approach. It learns over a large amount of examples to predict the right codes, without any indication. -
41
MindsDB
MindsDB
MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making capabilities. Our Values: - Connect to a wide range of data sources and applications using a single interface and language using the Federated query engine. - MindsDB's Knowledge Base unifies and makes sense of structured and unstructured data. - Minds "Cognition" understands, plans, finds, and retrieves the best data to respond to questions while offering full transparency of their thoughts and user actions to IT/operators. MindsDB offers AI solutions for Open Source and Minds Enterprise. -
42
Xilinx
Xilinx
The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications. -
43
Inferyx
Inferyx
Move past application silos, cost overrun, and skill obsolescence to scale faster with our intelligent data and analytics platform. An intelligent platform built to perform data management and advanced analytics. Helps you scale across the technology landscape. Our architecture understands how data flows and transforms throughout its lifecycle. Enabling the development of future-proof enterprise AI applications. A highly modular and extensible platform that enables the handling of multifold components. Designed to scale with a multi-tenant architecture. Analyzing complex data structures is made easy using advanced data visualization. Resulting in enhanced enterprise AI app development in an intuitive and low-code predictive platform. Our unique hybrid multi-cloud platform is built using open source community software which makes it immensely adaptive, highly secure, and essentially low-cost.Starting Price: Free -
44
C3 AI Suite
C3.ai
Build, deploy, and operate Enterprise AI applications. The C3 AI® Suite uses a unique model-driven architecture to accelerate delivery and reduce the complexities of developing enterprise AI applications. The C3 AI model-driven architecture provides an “abstraction layer,” that allows developers to build enterprise AI applications by using conceptual models of all the elements an application requires, instead of writing lengthy code. This provides significant benefits: Use AI applications and models that optimize processes for every product, asset, customer, or transaction across all regions and businesses. Deploy AI applications and see results in 1-2 quarters – rapidly roll out additional applications and new capabilities. Unlock sustained value – hundreds of millions to billions of dollars per year – from reduced costs, increased revenue, and higher margins. Ensure systematic, enterprise-wide governance of AI with C3.ai’s unified platform that offers data lineage and governance. -
45
Amazon SageMaker Studio
Amazon
Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models. -
46
Clarifai
Clarifai
Clarifai is a leading AI platform for modeling image, video, text and audio data at scale. Our platform combines computer vision, natural language processing and audio recognition as building blocks for developing better, faster and stronger AI. We help our customers create innovative solutions for visual search, content moderation, aerial surveillance, visual inspection, intelligent document analysis, and more. The platform comes with the broadest repository of pre-trained, out-of-the-box AI models built with millions of inputs and context. Our models give you a head start; extending your own custom AI models. Clarifai Community builds upon this and offers 1000s of pre-trained models and workflows from Clarifai and other leading AI builders. Users can build and share models with other community members. Founded in 2013 by Matt Zeiler, Ph.D., Clarifai has been recognized by leading analysts, IDC, Forrester and Gartner, as a leading computer vision AI platform. Visit clarifai.comStarting Price: $0 -
47
Dagster
Dagster Labs
Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.Starting Price: $0 -
48
AIxBlock
AIxBlock
AIxBlock: The first unified and decentralized platform for end-to-end AI development and workflow automation - built natively on MCP. AIxBlock is a MCP-based, decentralized end-to-end AI development and workflow automation platform purpose-built for AI engineer teams. It empowers users to build, train, deploy AI models and build AI automation workflows using those models through a unified environment that integrates decentralized compute, models, datasets, and labeling resources - all at a fraction of the traditional cost. AIxBlock is the modular AI ecosystem - purpose-built for custom model creation, workflow automation, and open interoperability across MCP client tools like Cursor, Claude, WindSurf, etc.Starting Price: $19 per month -
49
Gathr.ai
Gathr.ai
Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500Starting Price: $0.25/credit -
50
Amazon Augmented AI (A2I)
Amazon
Amazon Augmented AI (Amazon A2I) makes it easy to build the workflows required for human review of ML predictions. Amazon A2I brings human review to all developers, removing the undifferentiated heavy lifting associated with building human review systems or managing large numbers of human reviewers. Many machine learning applications require humans to review low confidence predictions to ensure the results are correct. For example, extracting information from scanned mortgage application forms can require human review in some cases due to low-quality scans or poor handwriting. But building human review systems can be time consuming and expensive because it involves implementing complex processes or “workflows”, writing custom software to manage review tasks and results, and in many cases, managing large groups of reviewers.