Alternatives to Portkey
Compare Portkey alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Portkey in 2025. Compare features, ratings, user reviews, pricing, and more from Portkey competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex. -
2
Cloudflare
Cloudflare
Cloudflare is the foundation for your infrastructure, applications, and teams. Cloudflare secures and ensures the reliability of your external-facing resources such as websites, APIs, and applications. It protects your internal resources such as behind-the-firewall applications, teams, and devices. And it is your platform for developing globally scalable applications. Your website, APIs, and applications are your key channels for doing business with your customers and suppliers. As more and more shift online, ensuring these resources are secure, performant and reliable is a business imperative. Cloudflare for Infrastructure is a complete solution to enable this for anything connected to the Internet. Behind-the-firewall applications and devices are foundational to the work of your internal teams. The recent surge in remote work is testing the limits of many organizations’ VPN and other hardware solutions. -
3
LM-Kit.NET
LM-Kit
LM-Kit.NET is a cutting-edge, high-level inference SDK designed specifically to bring the advanced capabilities of Large Language Models (LLM) into the C# ecosystem. Tailored for developers working within .NET, LM-Kit.NET provides a comprehensive suite of powerful Generative AI tools, making it easier than ever to integrate AI-driven functionality into your applications. The SDK is versatile, offering specialized AI features that cater to a variety of industries. These include text completion, Natural Language Processing (NLP), content retrieval, text summarization, text enhancement, language translation, and much more. Whether you are looking to enhance user interaction, automate content creation, or build intelligent data retrieval systems, LM-Kit.NET offers the flexibility and performance needed to accelerate your project. -
4
Dynatrace
Dynatrace
The Dynatrace software intelligence platform. Transform faster with unparalleled observability, automation, and intelligence in one platform. Leave the bag of tools behind, with one platform to automate your dynamic multicloud and align multiple teams. Spark collaboration between biz, dev, and ops with the broadest set of purpose-built use cases in one place. Harness and unify even the most complex dynamic multiclouds, with out-of-the box support for all major cloud platforms and technologies. Get a broader view of your environment. One that includes metrics, logs, and traces, as well as a full topological model with distributed tracing, code-level detail, entity relationships, and even user experience and behavioral data – all in context. Weave Dynatrace’s open API into your existing ecosystem to drive automation in everything from development and releases to cloud ops and business processes.Starting Price: $11 per month -
5
Amazon SageMaker
Amazon
Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers. -
6
Langfuse
Langfuse
Langfuse is an open source LLM engineering platform to help teams collaboratively debug, analyze and iterate on their LLM Applications. Observability: Instrument your app and start ingesting traces to Langfuse Langfuse UI: Inspect and debug complex logs and user sessions Prompts: Manage, version and deploy prompts from within Langfuse Analytics: Track metrics (LLM cost, latency, quality) and gain insights from dashboards & data exports Evals: Collect and calculate scores for your LLM completions Experiments: Track and test app behavior before deploying a new version Why Langfuse? - Open source - Model and framework agnostic - Built for production - Incrementally adoptable - start with a single LLM call or integration, then expand to full tracing of complex chains/agents - Use GET API to build downstream use cases and export dataStarting Price: $29/month -
7
Fetch Hive
Fetch Hive
Fetch Hive is a versatile Generative AI Collaboration Platform packed with features and values that enhance user experience and productivity: Custom RAG Chat Agents: Users can create chat agents with retrieval-augmented generation, which improves response quality and relevance. Centralized Data Storage: It provides a system for easily accessing and managing all necessary data for AI model training and deployment. Real-Time Data Integration: By incorporating real-time data from Google Search, Fetch Hive enhances workflows with up-to-date information, boosting decision-making and productivity. Generative AI Prompt Management: The platform helps in building and managing AI prompts, enabling users to refine and achieve desired outputs efficiently. Fetch Hive is a comprehensive solution for those looking to develop and manage generative AI projects effectively, optimizing interactions with advanced features and streamlined workflows.Starting Price: $49/month -
8
Orq.ai
Orq.ai
Orq.ai is the #1 platform for software teams to operate agentic AI systems at scale. Optimize prompts, deploy use cases, and monitor performance, no blind spots, no vibe checks. Experiment with prompts and LLM configurations before moving to production. Evaluate agentic AI systems in offline environments. Roll out GenAI features to specific user groups with guardrails, data privacy safeguards, and advanced RAG pipelines. Visualize all events triggered by agents for fast debugging. Get granular control on cost, latency, and performance. Connect to your favorite AI models, or bring your own. Speed up your workflow with out-of-the-box components built for agentic AI systems. Manage core stages of the LLM app lifecycle in one central platform. Self-hosted or hybrid deployment with SOC 2 and GDPR compliance for enterprise security. -
9
Maxim
Maxim
Maxim is an agent simulation, evaluation, and observability platform that empowers modern AI teams to deploy agents with quality, reliability, and speed. Maxim's end-to-end evaluation and data management stack covers every stage of the AI lifecycle, from prompt engineering to pre & post release testing and observability, data-set creation & management, and fine-tuning. Use Maxim to simulate and test your multi-turn workflows on a wide variety of scenarios and across different user personas before taking your application to production. Features: Agent Simulation Agent Evaluation Prompt Playground Logging/Tracing Workflows Custom Evaluators- AI, Programmatic and Statistical Dataset Curation Human-in-the-loop Use Case: Simulate and test AI agents Evals for agentic workflows: pre and post-release Tracing and debugging multi-agent workflows Real-time alerts on performance and quality Creating robust datasets for evals and fine-tuning Human-in-the-loop workflowsStarting Price: $29/seat/month -
10
DagsHub
DagsHub
DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.Starting Price: $9 per month -
11
Klu
Klu
Klu.ai is a Generative AI platform that simplifies the process of designing, deploying, and optimizing AI applications. Klu integrates with your preferred Large Language Models, incorporating data from varied sources, giving your applications unique context. Klu accelerates building applications using language models like Anthropic Claude, Azure OpenAI, GPT-4, and over 15 other models, allowing rapid prompt/model experimentation, data gathering and user feedback, and model fine-tuning while cost-effectively optimizing performance. Ship prompt generations, chat experiences, workflows, and autonomous workers in minutes. Klu provides SDKs and an API-first approach for all capabilities to enable developer productivity. Klu automatically provides abstractions for common LLM/GenAI use cases, including: LLM connectors, vector storage and retrieval, prompt templates, observability, and evaluation/testing tooling.Starting Price: $97 -
12
WhyLabs
WhyLabs
Enable observability to detect data and ML issues faster, deliver continuous improvements, and avoid costly incidents. Start with reliable data. Continuously monitor any data-in-motion for data quality issues. Pinpoint data and model drift. Identify training-serving skew and proactively retrain. Detect model accuracy degradation by continuously monitoring key performance metrics. Identify risky behavior in generative AI applications and prevent data leakage. Protect your generative AI applications are safe from malicious actions. Improve AI applications through user feedback, monitoring, and cross-team collaboration. Integrate in minutes with purpose-built agents that analyze raw data without moving or duplicating it, ensuring privacy and security. Onboard the WhyLabs SaaS Platform for any use cases using the proprietary privacy-preserving integration. Security approved for healthcare and banks. -
13
Helicone
Helicone
Track costs, usage, and latency for GPT applications with one line of code. Trusted by leading companies building with OpenAI. We will support Anthropic, Cohere, Google AI, and more coming soon. Stay on top of your costs, usage, and latency. Integrate models like GPT-4 with Helicone to track API requests and visualize results. Get an overview of your application with an in-built dashboard, tailor made for generative AI applications. View all of your requests in one place. Filter by time, users, and custom properties. Track spending on each model, user, or conversation. Use this data to optimize your API usage and reduce costs. Cache requests to save on latency and money, proactively track errors in your application, handle rate limits and reliability concerns with Helicone.Starting Price: $1 per 10,000 requests -
14
Vellum AI
Vellum
Bring LLM-powered features to production with tools for prompt engineering, semantic search, version control, quantitative testing, and performance monitoring. Compatible across all major LLM providers. Quickly develop an MVP by experimenting with different prompts, parameters, and even LLM providers to quickly arrive at the best configuration for your use case. Vellum acts as a low-latency, highly reliable proxy to LLM providers, allowing you to make version-controlled changes to your prompts – no code changes needed. Vellum collects model inputs, outputs, and user feedback. This data is used to build up valuable testing datasets that can be used to validate future changes before they go live. Dynamically include company-specific context in your prompts without managing your own semantic search infra. -
15
Athina AI
Athina AI
Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.Starting Price: Free -
16
Pezzo
Pezzo
Pezzo is the open-source LLMOps platform built for developers and teams. In just two lines of code, you can seamlessly troubleshoot and monitor your AI operations, collaborate and manage your prompts in one place, and instantly deploy changes to any environment.Starting Price: $0 -
17
Taam Cloud
Taam Cloud
Taam Cloud is a powerful AI API platform designed to help businesses and developers seamlessly integrate AI into their applications. With enterprise-grade security, high-performance infrastructure, and a developer-friendly approach, Taam Cloud simplifies AI adoption and scalability. Taam Cloud is an AI API platform that provides seamless integration of over 200 powerful AI models into applications, offering scalable solutions for both startups and enterprises. With products like the AI Gateway, Observability tools, and AI Agents, Taam Cloud enables users to log, trace, and monitor key AI metrics while routing requests to various models with one fast API. The platform also features an AI Playground for testing models in a sandbox environment, making it easier for developers to experiment and deploy AI-powered solutions. Taam Cloud is designed to offer enterprise-grade security and compliance, ensuring businesses can trust it for secure AI operations.Starting Price: $10/month -
18
OpenPipe
OpenPipe
OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.Starting Price: $1.20 per 1M tokens -
19
MLflow
MLflow
MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects. -
20
Literal AI
Literal AI
Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications. -
21
Dynamiq
Dynamiq
Dynamiq is a platform built for engineers and data scientists to build, deploy, test, monitor and fine-tune Large Language Models for any use case the enterprise wants to tackle. Key features: 🛠️ Workflows: Build GenAI workflows in a low-code interface to automate tasks at scale 🧠 Knowledge & RAG: Create custom RAG knowledge bases and deploy vector DBs in minutes 🤖 Agents Ops: Create custom LLM agents to solve complex task and connect them to your internal APIs 📈 Observability: Log all interactions, use large-scale LLM quality evaluations 🦺 Guardrails: Precise and reliable LLM outputs with pre-built validators, detection of sensitive content, and data leak prevention 📻 Fine-tuning: Fine-tune proprietary LLM models to make them your ownStarting Price: $125/month -
22
BenchLLM
BenchLLM
Use BenchLLM to evaluate your code on the fly. Build test suites for your models and generate quality reports. Choose between automated, interactive or custom evaluation strategies. We are a team of engineers who love building AI products. We don't want to compromise between the power and flexibility of AI and predictable results. We have built the open and flexible LLM evaluation tool that we have always wished we had. Run and evaluate models with simple and elegant CLI commands. Use the CLI as a testing tool for your CI/CD pipeline. Monitor models performance and detect regressions in production. Test your code on the fly. BenchLLM supports OpenAI, Langchain, and any other API out of the box. Use multiple evaluation strategies and visualize insightful reports. -
23
Arize AI
Arize AI
Automatically discover issues, diagnose problems, and improve models with Arize’s machine learning observability platform. Machine learning systems address mission critical needs for businesses and their customers every day, yet often fail to perform in the real world. Arize is an end-to-end observability platform to accelerate detecting and resolving issues for your AI models at large. Seamlessly enable observability for any model, from any platform, in any environment. Lightweight SDKs to send training, validation, and production datasets. Link real-time or delayed ground truth to predictions. Gain foresight and confidence that your models will perform as expected once deployed. Proactively catch any performance degradation, data/prediction drift, and quality issues before they spiral. Reduce the time to resolution (MTTR) for even the most complex models with flexible, easy-to-use tools for root cause analysis.Starting Price: $50/month -
24
Langtrace
Langtrace
Langtrace is an open source observability tool that collects and analyzes traces and metrics to help you improve your LLM apps. Langtrace ensures the highest level of security. Our cloud platform is SOC 2 Type II certified, ensuring top-tier protection for your data. Supports popular LLMs, frameworks, and vector databases. Langtrace can be self-hosted and supports OpenTelemetry standard traces, which can be ingested by any observability tool of your choice, resulting in no vendor lock-in. Get visibility and insights into your entire ML pipeline, whether it is a RAG or a fine-tuned model with traces and logs that cut across the framework, vectorDB, and LLM requests. Annotate and create golden datasets with traced LLM interactions, and use them to continuously test and enhance your AI applications. Langtrace includes built-in heuristic, statistical, and model-based evaluations to support this process.Starting Price: Free -
25
Promptmetheus
Promptmetheus
Compose, test, optimize, and deploy reliable prompts for the leading language models and AI platforms to supercharge your apps and workflows. Promptmetheus is an Integrated Development Environment (IDE) for LLM prompts, designed to help you automate workflows and augment products and services with the mighty capabilities of GPT and other cutting-edge AI models. With the advent of the transformer architecture, cutting-edge Language Models have reached parity with human capability in certain narrow cognitive tasks. But, to viably leverage their power, we have to ask the right questions. Promptmetheus provides a complete prompt engineering toolkit and adds composability, traceability, and analytics to the prompt design process to assist you in discovering those questions.Starting Price: $29 per month -
26
Arthur AI
Arthur
Track model performance to detect and react to data drift, improving model accuracy for better business outcomes. Build trust, ensure compliance, and drive more actionable ML outcomes with Arthur’s explainability and transparency APIs. Proactively monitor for bias, track model outcomes against custom bias metrics, and improve the fairness of your models. See how each model treats different population groups, proactively identify bias, and use Arthur's proprietary bias mitigation techniques. Arthur scales up and down to ingest up to 1MM transactions per second and deliver insights quickly. Actions can only be performed by authorized users. Individual teams/departments can have isolated environments with specific access control policies. Data is immutable once ingested, which prevents manipulation of metrics/insights. -
27
Galileo
Galileo
Models can be opaque in understanding what data they didn’t perform well on and why. Galileo provides a host of tools for ML teams to inspect and find ML data errors 10x faster. Galileo sifts through your unlabeled data to automatically identify error patterns and data gaps in your model. We get it - ML experimentation is messy. It needs a lot of data and model changes across many runs. Track and compare your runs in one place and quickly share reports with your team. Galileo has been built to integrate with your ML ecosystem. Send a fixed dataset to your data store to retrain, send mislabeled data to your labelers, share a collaborative report, and a lot more! Galileo is purpose-built for ML teams to build better quality models, faster. -
28
Dataiku
Dataiku
Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries. -
29
Cisco AI Defense
Cisco
Cisco AI Defense is a comprehensive security solution designed to enable enterprises to safely develop, deploy, and utilize AI applications. It addresses critical security challenges such as shadow AI—unauthorized use of third-party generative AI apps—and application security by providing full visibility into AI assets and enforcing controls to prevent data leakage and mitigate threats. Key components include AI Access, which offers control over third-party AI applications; AI Model and Application Validation, which conducts automated vulnerability assessments; AI Runtime Protection, which implements real-time guardrails against adversarial attacks; and AI Cloud Visibility, which inventories AI models and data sources across distributed environments. Leveraging Cisco's network-layer visibility and continuous threat intelligence updates, AI Defense ensures robust protection against evolving AI-related risks. -
30
TensorBlock
TensorBlock
TensorBlock is an open source AI infrastructure platform designed to democratize access to large language models through two complementary components. It has a self-hosted, privacy-first API gateway that unifies connections to any LLM provider under a single, OpenAI-compatible endpoint, with encrypted key management, dynamic model routing, usage analytics, and cost-optimized orchestration. TensorBlock Studio delivers a lightweight, developer-friendly multi-LLM interaction workspace featuring a plugin-based UI, extensible prompt workflows, real-time conversation history, and integrated natural-language APIs for seamless prompt engineering and model comparison. Built on a modular, scalable architecture and guided by principles of openness, composability, and fairness, TensorBlock enables organizations to experiment, deploy, and manage AI agents with full control and minimal infrastructure overhead.Starting Price: Free -
31
Prompteus
Alibaba
Prompteus is a platform designed to simplify the creation, management, and scaling of AI workflows, enabling users to build production-ready AI systems in minutes. It offers a visual editor to design workflows, which can then be deployed as secure, standalone APIs, eliminating the need for backend management. Prompteus supports multi-LLM integration, allowing users to connect to various large language models with dynamic switching and optimized costs. It also provides features like request-level logging for performance tracking, smarter caching to reduce latency and save on costs, and seamless integration into existing applications via simple APIs. Prompteus is serverless, scalable, and secure by default, ensuring efficient AI operation across different traffic volumes without infrastructure concerns. Prompteus helps users reduce AI provider costs by up to 40% through semantic caching and detailed analytics on usage patterns.Starting Price: $5 per 100,000 requests -
32
Evidently AI
Evidently AI
The open-source ML observability platform. Evaluate, test, and monitor ML models from validation to production. From tabular data to NLP and LLM. Built for data scientists and ML engineers. All you need to reliably run ML systems in production. Start with simple ad hoc checks. Scale to the complete monitoring platform. All within one tool, with consistent API and metrics. Useful, beautiful, and shareable. Get a comprehensive view of data and ML model quality to explore and debug. Takes a minute to start. Test before you ship, validate in production and run checks at every model update. Skip the manual setup by generating test conditions from a reference dataset. Monitor every aspect of your data, models, and test results. Proactively catch and resolve production model issues, ensure optimal performance, and continuously improve it.Starting Price: $500 per month -
33
Latitude
Latitude
Latitude is an open-source prompt engineering platform designed to help product teams build, evaluate, and deploy AI models efficiently. It allows users to import and manage prompts at scale, refine them with real or synthetic data, and track the performance of AI models using LLM-as-judge or human-in-the-loop evaluations. With powerful tools for dataset management and automatic logging, Latitude simplifies the process of fine-tuning models and improving AI performance, making it an essential platform for businesses focused on deploying high-quality AI applications.Starting Price: $0 -
34
HoneyHive
HoneyHive
AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management. -
35
PromptLayer
PromptLayer
The first platform built for prompt engineers. Log OpenAI requests, search usage history, track performance, and visually manage prompt templates. manage Never forget that one good prompt. GPT in prod, done right. Trusted by over 1,000 engineers to version prompts and monitor API usage. Start using your prompts in production. To get started, create an account by clicking “log in” on PromptLayer. Once logged in, click the button to create an API key and save this in a secure location. After making your first few requests, you should be able to see them in the PromptLayer dashboard! You can use PromptLayer with LangChain. LangChain is a popular Python library aimed at assisting in the development of LLM applications. It provides a lot of helpful features like chains, agents, and memory. Right now, the primary way to access PromptLayer is through our Python wrapper library that can be installed with pip.Starting Price: Free -
36
RagaAI
RagaAI
RagaAI is the #1 AI testing platform that helps enterprises mitigate AI risks and make their models secure and reliable. Reduce AI risk exposure across cloud or edge deployments and optimize MLOps costs with intelligent recommendations. A foundation model specifically designed to revolutionize AI testing. Easily identify the next steps to fix dataset and model issues. The AI-testing methods used by most today increase the time commitment and reduce productivity while building models. Also, they leave unforeseen risks, so they perform poorly post-deployment and thus waste both time and money for the business. We have built an end-to-end AI testing platform that helps enterprises drastically improve their AI development pipeline and prevent inefficiencies and risks post-deployment. 300+ tests to identify and fix every model, data, and operational issue, and accelerate AI development with comprehensive testing. -
37
Autoblocks AI
Autoblocks AI
Autoblocks is an AI-powered platform designed to help teams in high-stakes industries like healthcare, finance, and legal to rapidly prototype, test, and deploy reliable AI models. The platform focuses on reducing risk by simulating thousands of real-world scenarios, ensuring AI agents behave predictably and reliably before being deployed. Autoblocks enables seamless collaboration between developers and subject matter experts (SMEs), automatically capturing feedback and integrating it into the development process to continuously improve models and ensure compliance with industry standards. -
38
Teammately
Teammately
Teammately is an autonomous AI agent designed to revolutionize AI development by self-iterating AI products, models, and agents to meet your objectives beyond human capabilities. It employs a scientific approach, refining and selecting optimal combinations of prompts, foundation models, and knowledge chunking. To ensure reliability, Teammately synthesizes fair test datasets and constructs dynamic LLM-as-a-judge systems tailored to your project, quantifying AI capabilities and minimizing hallucinations. The platform aligns with your goals through Product Requirement Docs (PRD), enabling focused iteration towards desired outcomes. Key features include multi-step prompting, serverless vector search, and deep iteration processes that continuously refine AI until objectives are achieved. Teammately also emphasizes efficiency by identifying the smallest viable models, reducing costs, and enhancing performance.Starting Price: $25 per month -
39
Deepchecks
Deepchecks
Release high-quality LLM apps quickly without compromising on testing. Never be held back by the complex and subjective nature of LLM interactions. Generative AI produces subjective results. Knowing whether a generated text is good usually requires manual labor by a subject matter expert. If you’re working on an LLM app, you probably know that you can’t release it without addressing countless constraints and edge-cases. Hallucinations, incorrect answers, bias, deviation from policy, harmful content, and more need to be detected, explored, and mitigated before and after your app is live. Deepchecks’ solution enables you to automate the evaluation process, getting “estimated annotations” that you only override when you have to. Used by 1000+ companies, and integrated into 300+ open source projects, the core behind our LLM product is widely tested and robust. Validate machine learning models and data with minimal effort, in both the research and the production phases.Starting Price: $1,000 per month -
40
Deeploy
Deeploy
Deeploy helps you to stay in control of your ML models. Easily deploy your models on our responsible AI platform, without compromising on transparency, control, and compliance. Nowadays, transparency, explainability, and security of AI models is more important than ever. Having a safe and secure environment to deploy your models enables you to continuously monitor your model performance with confidence and responsibility. Over the years, we experienced the importance of human involvement with machine learning. Only when machine learning systems are explainable and accountable, experts and consumers can provide feedback to these systems, overrule decisions when necessary and grow their trust. That’s why we created Deeploy. -
41
Parea
Parea
The prompt engineering platform to experiment with different prompt versions, evaluate and compare prompts across a suite of tests, optimize prompts with one-click, share, and more. Optimize your AI development workflow. Key features to help you get and identify the best prompts for your production use cases. Side-by-side comparison of prompts across test cases with evaluation. CSV import test cases, and define custom evaluation metrics. Improve LLM results with automatic prompt and template optimization. View and manage all prompt versions and create OpenAI functions. Access all of your prompts programmatically, including observability and analytics. Determine the costs, latency, and efficacy of each prompt. Start enhancing your prompt engineering workflow with Parea today. Parea makes it easy for developers to improve the performance of their LLM apps through rigorous testing and version control. -
42
OpenLIT
OpenLIT
OpenLIT is an OpenTelemetry-native application observability tool. It's designed to make the integration process of observability into AI projects with just a single line of code. Whether you're working with popular LLM libraries such as OpenAI and HuggingFace. OpenLIT's native support makes adding it to your projects feel effortless and intuitive. Analyze LLM and GPU performance, and costs to achieve maximum efficiency and scalability. Streams data to let you visualize your data and make quick decisions and modifications. Ensures that data is processed quickly without affecting the performance of your application. OpenLIT UI helps you explore LLM costs, token consumption, performance indicators, and user interactions in a straightforward interface. Connect to popular observability systems with ease, including Datadog and Grafana Cloud, to export data automatically. OpenLIT ensures your applications are monitored seamlessly.Starting Price: Free -
43
LLM Gateway
LLM Gateway
LLM Gateway is a fully open source, unified API gateway that lets you route, manage, and analyze requests to any large language model provider, OpenAI, Anthropic, Google Vertex AI, and more, using a single, OpenAI-compatible endpoint. It offers multi-provider support with seamless migration and integration, dynamic model orchestration that routes each request to the optimal engine, and comprehensive usage analytics to track requests, token consumption, response times, and costs in real time. Built-in performance monitoring lets you compare models’ accuracy and cost-effectiveness, while secure key management centralizes API credentials under role-based controls. You can deploy LLM Gateway on your own infrastructure under the MIT license or use the hosted service as a progressive web app, and simple integration means you only need to change your API base URL, your existing code in any language or framework (cURL, Python, TypeScript, Go, etc.) continues to work without modification.Starting Price: $50 per month -
44
Gantry
Gantry
Get the full picture of your model's performance. Log inputs and outputs and seamlessly enrich them with metadata and user feedback. Figure out how your model is really working, and where you can improve. Monitor for errors and discover underperforming cohorts and use cases. The best models are built on user data. Programmatically gather unusual or underperforming examples to retrain your model. Stop manually reviewing thousands of outputs when changing your prompt or model. Evaluate your LLM-powered apps programmatically. Detect and fix degradations quickly. Monitor new deployments in real-time and seamlessly edit the version of your app your users interact with. Connect your self-hosted or third-party model and your existing data sources. Process enterprise-scale data with our serverless streaming dataflow engine. Gantry is SOC-2 compliant and built with enterprise-grade authentication. -
45
Arize Phoenix
Arize AI
Phoenix is an open-source observability library designed for experimentation, evaluation, and troubleshooting. It allows AI engineers and data scientists to quickly visualize their data, evaluate performance, track down issues, and export data to improve. Phoenix is built by Arize AI, the company behind the industry-leading AI observability platform, and a set of core contributors. Phoenix works with OpenTelemetry and OpenInference instrumentation. The main Phoenix package is arize-phoenix. We offer several helper packages for specific use cases. Our semantic layer is to add LLM telemetry to OpenTelemetry. Automatically instrumenting popular packages. Phoenix's open-source library supports tracing for AI applications, via manual instrumentation or through integrations with LlamaIndex, Langchain, OpenAI, and others. LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application.Starting Price: Free -
46
UpTrain
UpTrain
Get scores for factual accuracy, context retrieval quality, guideline adherence, tonality, and many more. You can’t improve what you can’t measure. UpTrain continuously monitors your application's performance on multiple evaluation criterions and alerts you in case of any regressions with automatic root cause analysis. UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison and optimal prompt selection. Hallucinations have plagued LLMs since their inception. By quantifying degree of hallucination and quality of retrieved context, UpTrain helps to detect responses with low factual accuracy and prevent them before serving to the end-users. -
47
Fiddler AI
Fiddler AI
Fiddler is a pioneer in Model Performance Management for responsible AI. The Fiddler platform’s unified environment provides a common language, centralized controls, and actionable insights to operationalize ML/AI with trust. Model monitoring, explainable AI, analytics, and fairness capabilities address the unique challenges of building in-house stable and secure MLOps systems at scale. Unlike observability solutions, Fiddler integrates deep XAI and analytics to help you grow into advanced capabilities over time and build a framework for responsible AI practices. Fortune 500 organizations use Fiddler across training and production models to accelerate AI time-to-value and scale, build trusted AI solutions, and increase revenue. -
48
Overseer AI
Overseer AI
Overseer AI is a platform designed to ensure AI-generated content is safe, accurate, and aligned with user-defined policies. It offers compliance enforcement by automating adherence to regulatory standards through custom policy rules, real-time content moderation to block harmful, toxic, or biased outputs from AI, debugging AI outputs by testing and monitoring responses against custom safety policies, policy-driven AI governance by applying centralized safety rules across all AI interactions, and trust-building for AI by guaranteeing safe, accurate, and brand-compliant outputs. The platform caters to various industries, including healthcare, finance, legal technology, customer support, education technology, and ecommerce & retail, providing tailored solutions to ensure AI responses align with industry-specific regulations and standards. Developers can access comprehensive guides and API references to integrate Overseer AI into their applications.Starting Price: $99 per month -
49
Prompt flow
Microsoft
Prompt Flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality. With Prompt Flow, you can create flows that link LLMs, prompts, Python code, and other tools together in an executable workflow. It allows for debugging and iteration of flows, especially tracing interactions with LLMs with ease. You can evaluate your flows, calculate quality and performance metrics with larger datasets, and integrate the testing and evaluation into your CI/CD system to ensure quality. Deployment of flows to the serving platform of your choice or integration into your app’s code base is made easy. Additionally, collaboration with your team is facilitated by leveraging the cloud version of Prompt Flow in Azure AI. -
50
Keywords AI
Keywords AI
Keywords AI is the leading LLM monitoring platform for AI startups. Thousands of engineers use Keywords AI to get complete LLM observability and user analytics. With 1 line of code change, you can easily integrate 200+ LLMs into your codebase. Keywords AI allows you to monitor, test, and improve your AI apps with minimal effort.Starting Price: $0/month