Labelbox
The training data platform for AI teams. A machine learning model is only as good as its training data. Labelbox is an end-to-end platform to create and manage high-quality training data all in one place, while supporting your production pipeline with powerful APIs. Powerful image labeling tool for image classification, object detection and segmentation. When every pixel matters, you need accurate and intuitive image segmentation tools. Customize the tools to support your specific use case, including instances, custom attributes and much more. Performant video labeling editor for cutting-edge computer vision. Label directly on the video up to 30 FPS with frame level. Additionally, Labelbox provides per frame label feature analytics enabling you to create better models faster. Creating training data for natural language intelligence has never been easier. Label text strings, conversations, paragraphs, and documents with fast & customizable classification.
Learn more
Azure Machine Learning
Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
Learn more
Google Cloud Vision AI
Derive insights from your images in the cloud or at the edge with AutoML Vision or use pre-trained Vision API models to detect emotion, understand text, and more. Google Cloud offers two computer vision products that use machine learning to help you understand your images with industry-leading prediction accuracy. Automate the training of your own custom machine learning models. Simply upload images and train custom image models with AutoML Vision’s easy-to-use graphical interface; optimize your models for accuracy, latency, and size; and export them to your application in the cloud, or to an array of devices at the edge. Google Cloud’s Vision API offers powerful pre-trained machine learning models through REST and RPC APIs. Assign labels to images and quickly classify them into millions of predefined categories. Detect objects and faces, read printed and handwritten text, and build valuable metadata into your image catalog.
Learn more
Amazon SageMaker
Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
Learn more