Alternatives to Maxim

Compare Maxim alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Maxim in 2025. Compare features, ratings, user reviews, pricing, and more from Maxim competitors and alternatives in order to make an informed decision for your business.

  • 1
    Ango Hub

    Ango Hub

    iMerit

    Ango Hub is a quality-focused, enterprise-ready data annotation platform for AI teams, available on cloud and on-premise. It supports computer vision, medical imaging, NLP, audio, video, and 3D point cloud annotation, powering use cases from autonomous driving and robotics to healthcare AI. Built for AI fine-tuning, RLHF, LLM evaluation, and human-in-the-loop workflows, Ango Hub boosts throughput with automation, model-assisted pre-labeling, and customizable QA while maintaining accuracy. Features include centralized instructions, review pipelines, issue tracking, and consensus across up to 30 annotators. With nearly twenty labeling tools—such as rotated bounding boxes, label relations, nested conditional questions, and table-based labeling—it supports both simple and complex projects. It also enables annotation pipelines for chain-of-thought reasoning and next-gen LLM training and enterprise-grade security with HIPAA compliance, SOC 2 certification, and role-based access controls.
    Compare vs. Maxim View Software
    Visit Website
  • 2
    Dynatrace

    Dynatrace

    Dynatrace

    The Dynatrace software intelligence platform. Transform faster with unparalleled observability, automation, and intelligence in one platform. Leave the bag of tools behind, with one platform to automate your dynamic multicloud and align multiple teams. Spark collaboration between biz, dev, and ops with the broadest set of purpose-built use cases in one place. Harness and unify even the most complex dynamic multiclouds, with out-of-the box support for all major cloud platforms and technologies. Get a broader view of your environment. One that includes metrics, logs, and traces, as well as a full topological model with distributed tracing, code-level detail, entity relationships, and even user experience and behavioral data – all in context. Weave Dynatrace’s open API into your existing ecosystem to drive automation in everything from development and releases to cloud ops and business processes.
    Starting Price: $11 per month
  • 3
    Latitude

    Latitude

    Latitude

    Latitude is an open-source prompt engineering platform designed to help product teams build, evaluate, and deploy AI models efficiently. It allows users to import and manage prompts at scale, refine them with real or synthetic data, and track the performance of AI models using LLM-as-judge or human-in-the-loop evaluations. With powerful tools for dataset management and automatic logging, Latitude simplifies the process of fine-tuning models and improving AI performance, making it an essential platform for businesses focused on deploying high-quality AI applications.
    Starting Price: $0
  • 4
    Klu

    Klu

    Klu

    Klu.ai is a Generative AI platform that simplifies the process of designing, deploying, and optimizing AI applications. Klu integrates with your preferred Large Language Models, incorporating data from varied sources, giving your applications unique context. Klu accelerates building applications using language models like Anthropic Claude, Azure OpenAI, GPT-4, and over 15 other models, allowing rapid prompt/model experimentation, data gathering and user feedback, and model fine-tuning while cost-effectively optimizing performance. Ship prompt generations, chat experiences, workflows, and autonomous workers in minutes. Klu provides SDKs and an API-first approach for all capabilities to enable developer productivity. Klu automatically provides abstractions for common LLM/GenAI use cases, including: LLM connectors, vector storage and retrieval, prompt templates, observability, and evaluation/testing tooling.
    Starting Price: $97
  • 5
    Langfuse

    Langfuse

    Langfuse

    Langfuse is an open source LLM engineering platform to help teams collaboratively debug, analyze and iterate on their LLM Applications. Observability: Instrument your app and start ingesting traces to Langfuse Langfuse UI: Inspect and debug complex logs and user sessions Prompts: Manage, version and deploy prompts from within Langfuse Analytics: Track metrics (LLM cost, latency, quality) and gain insights from dashboards & data exports Evals: Collect and calculate scores for your LLM completions Experiments: Track and test app behavior before deploying a new version Why Langfuse? - Open source - Model and framework agnostic - Built for production - Incrementally adoptable - start with a single LLM call or integration, then expand to full tracing of complex chains/agents - Use GET API to build downstream use cases and export data
    Starting Price: $29/month
  • 6
    Vivgrid

    Vivgrid

    Vivgrid

    Vivgrid is a development platform for AI agents that emphasizes observability, debugging, safety, and global deployment infrastructure. It gives you full visibility into agent behavior, logging prompts, memory fetches, tool usage, and reasoning chains, letting developers trace where things break or deviate. You can test, evaluate, and enforce safety policies (like refusal rules or filters), and incorporate human-in-the-loop checks before going live. Vivgrid supports the orchestration of multi-agent systems with stateful memory, routing tasks dynamically across agent workflows. On the deployment side, it operates a globally distributed inference network to ensure low-latency (sub-50 ms) execution and exposes metrics like latency, cost, and usage in real time. It aims to simplify shipping resilient AI systems by combining debugging, evaluation, safety, and deployment into one stack, so you're not stitching together observability, infrastructure, and orchestration.
    Starting Price: $25 per month
  • 7
    Athina AI

    Athina AI

    Athina AI

    Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.
    Starting Price: Free
  • 8
    HoneyHive

    HoneyHive

    HoneyHive

    AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management.
  • 9
    Literal AI

    Literal AI

    Literal AI

    Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications.
  • 10
    Portkey

    Portkey

    Portkey.ai

    Launch production-ready apps with the LMOps stack for monitoring, model management, and more. Replace your OpenAI or other provider APIs with the Portkey endpoint. Manage prompts, engines, parameters, and versions in Portkey. Switch, test, and upgrade models with confidence! View your app performance & user level aggregate metics to optimise usage and API costs Keep your user data secure from attacks and inadvertent exposure. Get proactive alerts when things go bad. A/B test your models in the real world and deploy the best performers. We built apps on top of LLM APIs for the past 2 and a half years and realised that while building a PoC took a weekend, taking it to production & managing it was a pain! We're building Portkey to help you succeed in deploying large language models APIs in your applications. Regardless of you trying Portkey, we're always happy to help!
    Starting Price: $49 per month
  • 11
    Weavel

    Weavel

    Weavel

    Meet Ape, the first AI prompt engineer. Equipped with tracing, dataset curation, batch testing, and evals. Ape achieves an impressive 93% on the GSM8K benchmark, surpassing both DSPy (86%) and base LLMs (70%). Continuously optimize prompts using real-world data. Prevent performance regression with CI/CD integration. Human-in-the-loop with scoring and feedback. Ape works with the Weavel SDK to automatically log and add LLM generations to your dataset as you use your application. This enables seamless integration and continuous improvement specific to your use case. Ape auto-generates evaluation code and uses LLMs as impartial judges for complex tasks, streamlining your assessment process and ensuring accurate, nuanced performance metrics. Ape is reliable, as it works with your guidance and feedback. Feed in scores and tips to help Ape improve. Equipped with logging, testing, and evaluation for LLM applications.
    Starting Price: Free
  • 12
    Orq.ai

    Orq.ai

    Orq.ai

    Orq.ai is the #1 platform for software teams to operate agentic AI systems at scale. Optimize prompts, deploy use cases, and monitor performance, no blind spots, no vibe checks. Experiment with prompts and LLM configurations before moving to production. Evaluate agentic AI systems in offline environments. Roll out GenAI features to specific user groups with guardrails, data privacy safeguards, and advanced RAG pipelines. Visualize all events triggered by agents for fast debugging. Get granular control on cost, latency, and performance. Connect to your favorite AI models, or bring your own. Speed up your workflow with out-of-the-box components built for agentic AI systems. Manage core stages of the LLM app lifecycle in one central platform. Self-hosted or hybrid deployment with SOC 2 and GDPR compliance for enterprise security.
  • 13
    DeepEval

    DeepEval

    Confident AI

    DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.
    Starting Price: Free
  • 14
    Dynamiq

    Dynamiq

    Dynamiq

    Dynamiq is a platform built for engineers and data scientists to build, deploy, test, monitor and fine-tune Large Language Models for any use case the enterprise wants to tackle. Key features: 🛠️ Workflows: Build GenAI workflows in a low-code interface to automate tasks at scale 🧠 Knowledge & RAG: Create custom RAG knowledge bases and deploy vector DBs in minutes 🤖 Agents Ops: Create custom LLM agents to solve complex task and connect them to your internal APIs 📈 Observability: Log all interactions, use large-scale LLM quality evaluations 🦺 Guardrails: Precise and reliable LLM outputs with pre-built validators, detection of sensitive content, and data leak prevention 📻 Fine-tuning: Fine-tune proprietary LLM models to make them your own
    Starting Price: $125/month
  • 15
    Langtrace

    Langtrace

    Langtrace

    Langtrace is an open source observability tool that collects and analyzes traces and metrics to help you improve your LLM apps. Langtrace ensures the highest level of security. Our cloud platform is SOC 2 Type II certified, ensuring top-tier protection for your data. Supports popular LLMs, frameworks, and vector databases. Langtrace can be self-hosted and supports OpenTelemetry standard traces, which can be ingested by any observability tool of your choice, resulting in no vendor lock-in. Get visibility and insights into your entire ML pipeline, whether it is a RAG or a fine-tuned model with traces and logs that cut across the framework, vectorDB, and LLM requests. Annotate and create golden datasets with traced LLM interactions, and use them to continuously test and enhance your AI applications. Langtrace includes built-in heuristic, statistical, and model-based evaluations to support this process.
    Starting Price: Free
  • 16
    Arize Phoenix
    Phoenix is an open-source observability library designed for experimentation, evaluation, and troubleshooting. It allows AI engineers and data scientists to quickly visualize their data, evaluate performance, track down issues, and export data to improve. Phoenix is built by Arize AI, the company behind the industry-leading AI observability platform, and a set of core contributors. Phoenix works with OpenTelemetry and OpenInference instrumentation. The main Phoenix package is arize-phoenix. We offer several helper packages for specific use cases. Our semantic layer is to add LLM telemetry to OpenTelemetry. Automatically instrumenting popular packages. Phoenix's open-source library supports tracing for AI applications, via manual instrumentation or through integrations with LlamaIndex, Langchain, OpenAI, and others. LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application.
    Starting Price: Free
  • 17
    Lucidic AI

    Lucidic AI

    Lucidic AI

    Lucidic AI is a specialized analytics and simulation platform built for AI agent development that brings much-needed transparency, interpretability, and efficiency to often opaque workflows. It provides developers with visual, interactive insights, including searchable workflow replays, step-by-step video, and graph-based replays of agent decisions, decision tree visualizations, and side‑by‑side simulation comparisons, that enable you to observe exactly how your agent reasons and why it succeeds or fails. The tool dramatically reduces iteration time from weeks or days to mere minutes by streamlining debugging and optimization through instant feedback loops, real‑time “time‑travel” editing, mass simulations, trajectory clustering, customizable evaluation rubrics, and prompt versioning. Lucidic AI integrates seamlessly with major LLMs and frameworks and offers advanced QA/QC mechanisms like alerts, workflow sandboxing, and more.
  • 18
    Vellum AI
    Bring LLM-powered features to production with tools for prompt engineering, semantic search, version control, quantitative testing, and performance monitoring. Compatible across all major LLM providers. Quickly develop an MVP by experimenting with different prompts, parameters, and even LLM providers to quickly arrive at the best configuration for your use case. Vellum acts as a low-latency, highly reliable proxy to LLM providers, allowing you to make version-controlled changes to your prompts – no code changes needed. Vellum collects model inputs, outputs, and user feedback. This data is used to build up valuable testing datasets that can be used to validate future changes before they go live. Dynamically include company-specific context in your prompts without managing your own semantic search infra.
  • 19
    Hamming

    Hamming

    Hamming

    Prompt optimization, automated voice testing, monitoring, and more. Test your AI voice agent against 1000s of simulated users in minutes. AI voice agents are hard to get right. A small change in prompts, function call definitions or model providers can cause large changes in LLM outputs. We're the only end-to-end platform that supports you from development to production. You can store, manage, version, and keep your prompts synced with voice infra providers from Hamming. This is 1000x more efficient than testing your voice agents by hand. Use our prompt playground to test LLM outputs on a dataset of inputs. Our LLM judges the quality of generated outputs. Save 80% of manual prompt engineering effort. Go beyond passive monitoring. We actively track and score how users are using your AI app in production and flag cases that need your attention using LLM judges. Easily convert calls and traces into test cases and add them to your golden dataset.
  • 20
    Entry Point AI

    Entry Point AI

    Entry Point AI

    Entry Point AI is the modern AI optimization platform for proprietary and open source language models. Manage prompts, fine-tunes, and evals all in one place. When you reach the limits of prompt engineering, it’s time to fine-tune a model, and we make it easy. Fine-tuning is showing a model how to behave, not telling. It works together with prompt engineering and retrieval-augmented generation (RAG) to leverage the full potential of AI models. Fine-tuning can help you to get better quality from your prompts. Think of it like an upgrade to few-shot learning that bakes the examples into the model itself. For simpler tasks, you can train a lighter model to perform at or above the level of a higher-quality model, greatly reducing latency and cost. Train your model not to respond in certain ways to users, for safety, to protect your brand, and to get the formatting right. Cover edge cases and steer model behavior by adding examples to your dataset.
    Starting Price: $49 per month
  • 21
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 22
    Prompt flow

    Prompt flow

    Microsoft

    Prompt Flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality. With Prompt Flow, you can create flows that link LLMs, prompts, Python code, and other tools together in an executable workflow. It allows for debugging and iteration of flows, especially tracing interactions with LLMs with ease. You can evaluate your flows, calculate quality and performance metrics with larger datasets, and integrate the testing and evaluation into your CI/CD system to ensure quality. Deployment of flows to the serving platform of your choice or integration into your app’s code base is made easy. Additionally, collaboration with your team is facilitated by leveraging the cloud version of Prompt Flow in Azure AI.
  • 23
    Okareo

    Okareo

    Okareo

    Okareo is an AI development platform designed to help teams build, test, and monitor AI agents with confidence. It offers automated simulations to uncover edge cases, system conflicts, and failure points before deployment, ensuring that AI features are robust and reliable. With real-time error tracking and intelligent safeguards, Okareo helps prevent hallucinations and maintains accuracy in production environments. Okareo continuously fine-tunes AI using domain-specific data and live performance insights, boosting relevance, effectiveness, and user satisfaction. By turning agent behaviors into actionable insights, Okareo enables teams to surface what's working, what's not, and where to focus next, driving business value beyond mere logs. Designed for seamless collaboration and scalability, Okareo supports both small and large-scale AI projects, making it an essential tool for AI teams aiming to deliver high-quality AI applications efficiently.
    Starting Price: $199 per month
  • 24
    PromptLayer

    PromptLayer

    PromptLayer

    The first platform built for prompt engineers. Log OpenAI requests, search usage history, track performance, and visually manage prompt templates. manage Never forget that one good prompt. GPT in prod, done right. Trusted by over 1,000 engineers to version prompts and monitor API usage. Start using your prompts in production. To get started, create an account by clicking “log in” on PromptLayer. Once logged in, click the button to create an API key and save this in a secure location. After making your first few requests, you should be able to see them in the PromptLayer dashboard! You can use PromptLayer with LangChain. LangChain is a popular Python library aimed at assisting in the development of LLM applications. It provides a lot of helpful features like chains, agents, and memory. Right now, the primary way to access PromptLayer is through our Python wrapper library that can be installed with pip.
    Starting Price: Free
  • 25
    DagsHub

    DagsHub

    DagsHub

    DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.
    Starting Price: $9 per month
  • 26
    Symflower

    Symflower

    Symflower

    Symflower enhances software development by integrating static, dynamic, and symbolic analyses with Large Language Models (LLMs). This combination leverages the precision of deterministic analyses and the creativity of LLMs, resulting in higher quality and faster software development. Symflower assists in identifying the most suitable LLM for specific projects by evaluating various models against real-world scenarios, ensuring alignment with specific environments, workflows, and requirements. The platform addresses common LLM challenges by implementing automatic pre-and post-processing, which improves code quality and functionality. By providing the appropriate context through Retrieval-Augmented Generation (RAG), Symflower reduces hallucinations and enhances LLM performance. Continuous benchmarking ensures that use cases remain effective and compatible with the latest models. Additionally, Symflower accelerates fine-tuning and training data curation, offering detailed reports.
  • 27
    Adaline

    Adaline

    Adaline

    Iterate quickly and ship confidently. Confidently ship by evaluating your prompts with a suite of evals like context recall, llm-rubric (LLM as a judge), latency, and more. Let us handle intelligent caching and complex implementations to save you time and money. Quickly iterate on your prompts in a collaborative playground that supports all the major providers, variables, automatic versioning, and more. Easily build datasets from real data using Logs, upload your own as a CSV, or collaboratively build and edit within your Adaline workspace. Track usage, latency, and other metrics to monitor the health of your LLMs and the performance of your prompts using our APIs. Continuously evaluate your completions in production, see how your users are using your prompts, and create datasets by sending logs using our APIs. The single platform to iterate, evaluate, and monitor LLMs. Easily rollbacks if your performance regresses in production, and see how your team iterated the prompt.
  • 28
    Taam Cloud

    Taam Cloud

    Taam Cloud

    Taam Cloud is a powerful AI API platform designed to help businesses and developers seamlessly integrate AI into their applications. With enterprise-grade security, high-performance infrastructure, and a developer-friendly approach, Taam Cloud simplifies AI adoption and scalability. Taam Cloud is an AI API platform that provides seamless integration of over 200 powerful AI models into applications, offering scalable solutions for both startups and enterprises. With products like the AI Gateway, Observability tools, and AI Agents, Taam Cloud enables users to log, trace, and monitor key AI metrics while routing requests to various models with one fast API. The platform also features an AI Playground for testing models in a sandbox environment, making it easier for developers to experiment and deploy AI-powered solutions. Taam Cloud is designed to offer enterprise-grade security and compliance, ensuring businesses can trust it for secure AI operations.
    Starting Price: $10/month
  • 29
    Braintrust

    Braintrust

    Braintrust

    Braintrust is the enterprise-grade stack for building AI products. From evaluations, to prompt playground, to data management, we take uncertainty and tedium out of incorporating AI into your business. Compare multiple prompts, benchmarks, and respective input/output pairs between runs. Tinker ephemerally, or turn your draft into an experiment to evaluate over a large dataset. Leverage Braintrust in your continuous integration workflow so you can track progress on your main branch, and automatically compare new experiments to what’s live before you ship. Easily capture rated examples from staging & production, evaluate them, and incorporate them into “golden” datasets. Datasets reside in your cloud and are automatically versioned, so you can evolve them without the risk of breaking evaluations that depend on them.
  • 30
    doteval

    doteval

    doteval

    doteval is an AI-assisted evaluation workspace that simplifies the creation of high-signal evaluations, alignment of LLM judges, and definition of rewards for reinforcement learning, all within a single platform. It offers a Cursor-like experience to edit evaluations-as-code against a YAML schema, enabling users to version evaluations across checkpoints, replace manual effort with AI-generated diffs, and compare evaluation runs on tight execution loops to align them with proprietary data. doteval supports the specification of fine-grained rubrics and aligned graders, facilitating rapid iteration and high-quality evaluation datasets. Users can confidently determine model upgrades or prompt improvements and export specifications for reinforcement learning training. It is designed to accelerate the evaluation and reward creation process by 10 to 100 times, making it a valuable tool for frontier AI teams benchmarking complex model tasks.
  • 31
    Parea

    Parea

    Parea

    The prompt engineering platform to experiment with different prompt versions, evaluate and compare prompts across a suite of tests, optimize prompts with one-click, share, and more. Optimize your AI development workflow. Key features to help you get and identify the best prompts for your production use cases. Side-by-side comparison of prompts across test cases with evaluation. CSV import test cases, and define custom evaluation metrics. Improve LLM results with automatic prompt and template optimization. View and manage all prompt versions and create OpenAI functions. Access all of your prompts programmatically, including observability and analytics. Determine the costs, latency, and efficacy of each prompt. Start enhancing your prompt engineering workflow with Parea today. Parea makes it easy for developers to improve the performance of their LLM apps through rigorous testing and version control.
  • 32
    Opik

    Opik

    Comet

    Confidently evaluate, test, and ship LLM applications with a suite of observability tools to calibrate language model outputs across your dev and production lifecycle. Log traces and spans, define and compute evaluation metrics, score LLM outputs, compare performance across app versions, and more. Record, sort, search, and understand each step your LLM app takes to generate a response. Manually annotate, view, and compare LLM responses in a user-friendly table. Log traces during development and in production. Run experiments with different prompts and evaluate against a test set. Choose and run pre-configured evaluation metrics or define your own with our convenient SDK library. Consult built-in LLM judges for complex issues like hallucination detection, factuality, and moderation. Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Build comprehensive test suites to evaluate your entire LLM pipeline on every deployment.
    Starting Price: $39 per month
  • 33
    Teammately

    Teammately

    Teammately

    Teammately is an autonomous AI agent designed to revolutionize AI development by self-iterating AI products, models, and agents to meet your objectives beyond human capabilities. It employs a scientific approach, refining and selecting optimal combinations of prompts, foundation models, and knowledge chunking. To ensure reliability, Teammately synthesizes fair test datasets and constructs dynamic LLM-as-a-judge systems tailored to your project, quantifying AI capabilities and minimizing hallucinations. The platform aligns with your goals through Product Requirement Docs (PRD), enabling focused iteration towards desired outcomes. Key features include multi-step prompting, serverless vector search, and deep iteration processes that continuously refine AI until objectives are achieved. Teammately also emphasizes efficiency by identifying the smallest viable models, reducing costs, and enhancing performance.
    Starting Price: $25 per month
  • 34
    Humanloop

    Humanloop

    Humanloop

    Eye-balling a few examples isn't enough. Collect end-user feedback at scale to unlock actionable insights on how to improve your models. Easily A/B test models and prompts with the improvement engine built for GPT. Prompts only get your so far. Get higher quality results by fine-tuning on your best data – no coding or data science required. Integration in a single line of code. Experiment with Claude, ChatGPT and other language model providers without touching it again. You can build defensible and innovative products on top of powerful APIs – if you have the right tools to customize the models for your customers. Copy AI fine tune models on their best data, enabling cost savings and a competitive advantage. Enabling magical product experiences that delight over 2 million active users.
  • 35
    Galileo

    Galileo

    Galileo

    Models can be opaque in understanding what data they didn’t perform well on and why. Galileo provides a host of tools for ML teams to inspect and find ML data errors 10x faster. Galileo sifts through your unlabeled data to automatically identify error patterns and data gaps in your model. We get it - ML experimentation is messy. It needs a lot of data and model changes across many runs. Track and compare your runs in one place and quickly share reports with your team. Galileo has been built to integrate with your ML ecosystem. Send a fixed dataset to your data store to retrain, send mislabeled data to your labelers, share a collaborative report, and a lot more! Galileo is purpose-built for ML teams to build better quality models, faster.
  • 36
    AgentBench

    AgentBench

    AgentBench

    AgentBench is an evaluation framework specifically designed to assess the capabilities and performance of autonomous AI agents. It provides a standardized set of benchmarks that test various aspects of an agent's behavior, such as task-solving ability, decision-making, adaptability, and interaction with simulated environments. By evaluating agents on tasks across different domains, AgentBench helps developers identify strengths and weaknesses in the agents’ performance, such as their ability to plan, reason, and learn from feedback. The framework offers insights into how well an agent can handle complex, real-world-like scenarios, making it useful for both research and practical development. Overall, AgentBench supports the iterative improvement of autonomous agents, ensuring they meet reliability and efficiency standards before wider application.
  • 37
    Evidently AI

    Evidently AI

    Evidently AI

    The open-source ML observability platform. Evaluate, test, and monitor ML models from validation to production. From tabular data to NLP and LLM. Built for data scientists and ML engineers. All you need to reliably run ML systems in production. Start with simple ad hoc checks. Scale to the complete monitoring platform. All within one tool, with consistent API and metrics. Useful, beautiful, and shareable. Get a comprehensive view of data and ML model quality to explore and debug. Takes a minute to start. Test before you ship, validate in production and run checks at every model update. Skip the manual setup by generating test conditions from a reference dataset. Monitor every aspect of your data, models, and test results. Proactively catch and resolve production model issues, ensure optimal performance, and continuously improve it.
    Starting Price: $500 per month
  • 38
    Pezzo

    Pezzo

    Pezzo

    Pezzo is the open-source LLMOps platform built for developers and teams. In just two lines of code, you can seamlessly troubleshoot and monitor your AI operations, collaborate and manage your prompts in one place, and instantly deploy changes to any environment.
    Starting Price: $0
  • 39
    Together AI

    Together AI

    Together AI

    Whether prompt engineering, fine-tuning, or training, we are ready to meet your business demands. Easily integrate your new model into your production application using the Together Inference API. With the fastest performance available and elastic scaling, Together AI is built to scale with your needs as you grow. Inspect how models are trained and what data is used to increase accuracy and minimize risks. You own the model you fine-tune, not your cloud provider. Change providers for whatever reason, including price changes. Maintain complete data privacy by storing data locally or in our secure cloud.
    Starting Price: $0.0001 per 1k tokens
  • 40
    Haystack

    Haystack

    deepset

    Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning, not just keywords! Make use of and compare the latest pre-trained transformer-based languages models like OpenAI’s GPT-3, BERT, RoBERTa, DPR, and more. Build semantic search and question-answering applications that can scale to millions of documents. Building blocks for the entire product development cycle such as file converters, indexing functions, models, labeling tools, domain adaptation modules, and REST API.
  • 41
    Agenta

    Agenta

    Agenta

    Collaborate on prompts, evaluate, and monitor LLM apps with confidence. Agenta is a comprehensive platform that enables teams to quickly build robust LLM apps. Create a playground connected to your code where the whole team can experiment and collaborate. Systematically compare different prompts, models, and embeddings before going to production. Share a link to gather human feedback from the rest of the team. Agenta works out of the box with all frameworks (Langchain, Lama Index, etc.) and model providers (OpenAI, Cohere, Huggingface, self-hosted models, etc.). Gain visibility into your LLM app's costs, latency, and chain of calls. You have the option to create simple LLM apps directly from the UI. However, if you would like to write customized applications, you need to write code with Python. Agenta is model agnostic and works with all model providers and frameworks. The only limitation at present is that our SDK is available only in Python.
    Starting Price: Free
  • 42
    HumanSignal

    HumanSignal

    HumanSignal

    HumanSignal's Label Studio Enterprise is a comprehensive platform designed for creating high-quality labeled data and evaluating model outputs with human supervision. It supports labeling and evaluating multi-modal data, image, video, audio, text, and time series, all in one place. It offers customizable labeling interfaces with pre-built templates and powerful plugins, allowing users to tailor the UI and workflows to specific use cases. Label Studio Enterprise integrates seamlessly with popular cloud storage providers and ML/AI models, facilitating pre-annotation, AI-assisted labeling, and prediction generation for model evaluation. The Prompts feature enables users to leverage LLMs to swiftly generate accurate predictions, enabling instant labeling of thousands of tasks. It supports various labeling use cases, including text classification, named entity recognition, sentiment analysis, summarization, and image captioning.
    Starting Price: $99 per month
  • 43
    Narrow AI

    Narrow AI

    Narrow AI

    Introducing Narrow AI: Take the Engineer out of Prompt Engineering Narrow AI autonomously writes, monitors, and optimizes prompts for any model - so you can ship AI features 10x faster at a fraction of the cost. Maximize quality while minimizing costs - Reduce AI spend by 95% with cheaper models - Improve accuracy through Automated Prompt Optimization - Achieve faster responses with lower latency models Test new models in minutes, not weeks - Easily compare prompt performance across LLMs - Get cost and latency benchmarks for each model - Deploy on the optimal model for your use case Ship LLM features 10x faster - Automatically generate expert-level prompts - Adapt prompts to new models as they are released - Optimize prompts for quality, cost and speed
    Starting Price: $500/month/team
  • 44
    Traceloop

    Traceloop

    Traceloop

    Traceloop is a comprehensive observability platform designed to monitor, debug, and test the quality of outputs from Large Language Models (LLMs). It offers real-time alerts for unexpected output quality changes, execution tracing for every request, and the ability to gradually roll out changes to models and prompts. Developers can debug and re-run issues from production directly in their Integrated Development Environment (IDE). Traceloop integrates seamlessly with the OpenLLMetry SDK, supporting multiple programming languages including Python, JavaScript/TypeScript, Go, and Ruby. The platform provides a range of semantic, syntactic, safety, and structural metrics to assess LLM outputs, such as QA relevancy, faithfulness, text quality, grammar correctness, redundancy detection, focus assessment, text length, word count, PII detection, secret detection, toxicity detection, regex validation, SQL validation, JSON schema validation, and code validation.
    Starting Price: $59 per month
  • 45
    Promptmetheus

    Promptmetheus

    Promptmetheus

    Compose, test, optimize, and deploy reliable prompts for the leading language models and AI platforms to supercharge your apps and workflows. Promptmetheus is an Integrated Development Environment (IDE) for LLM prompts, designed to help you automate workflows and augment products and services with the mighty capabilities of GPT and other cutting-edge AI models. With the advent of the transformer architecture, cutting-edge Language Models have reached parity with human capability in certain narrow cognitive tasks. But, to viably leverage their power, we have to ask the right questions. Promptmetheus provides a complete prompt engineering toolkit and adds composability, traceability, and analytics to the prompt design process to assist you in discovering those questions.
    Starting Price: $29 per month
  • 46
    Dash0

    Dash0

    Dash0

    Dash0 is an OpenTelemetry-native observability platform that unifies metrics, logs, traces, and resources into one intuitive interface, enabling fast and context-rich monitoring without vendor lock-in. It centralizes Prometheus and OpenTelemetry metrics, supports powerful filtering of high-cardinality attributes, and provides heatmap drilldowns and detailed trace views to pinpoint errors and bottlenecks in real time. Users benefit from fully customizable dashboards built on Perses, with support for code-based configuration and Grafana import, plus seamless integration with predefined alerts, checks, and PromQL queries. Dash0's AI-enhanced tools, such as Log AI for automated severity inference and pattern extraction, enrich telemetry data without requiring users to even notice that AI is working behind the scenes. These AI capabilities power features like log classification, grouping, inferred severity tagging, and streamlined triage workflows through the SIFT framework.
    Starting Price: $0.20 per month
  • 47
    InsightFinder

    InsightFinder

    InsightFinder

    InsightFinder Unified Intelligence Engine (UIE) platform provides human-centered AI solutions for identifying incident root causes, and predicting and preventing production incidents. Powered by patented self-tuning unsupervised machine learning, InsightFinder continuously learns from metric time series, logs, traces, and triage threads from SREs and DevOps Engineers to bubble up root causes and predict incidents from the source. Companies of all sizes have embraced the platform and seen that business-impacting incidents can be predicted hours ahead with clearly pinpointed root causes. Survey a comprehensive overview of your IT Ops ecosystem, including patterns, trends, and team activities. Also view calculations that demonstrate overall downtime savings, cost of labor savings, and number of incidents resolved.
    Starting Price: $2.5 per core per month
  • 48
    Scale Evaluation
    Scale Evaluation offers a comprehensive evaluation platform tailored for developers of large language models. This platform addresses current challenges in AI model assessment, such as the scarcity of high-quality, trustworthy evaluation datasets and the lack of consistent model comparisons. By providing proprietary evaluation sets across various domains and capabilities, Scale ensures accurate model assessments without overfitting. The platform features a user-friendly interface for analyzing and reporting model performance, enabling standardized evaluations for true apples-to-apples comparisons. Additionally, Scale's network of expert human raters delivers reliable evaluations, supported by transparent metrics and quality assurance mechanisms. The platform also offers targeted evaluations with custom sets focusing on specific model concerns, facilitating precise improvements through new training data.
  • 49
    TruLens

    TruLens

    TruLens

    TruLens is an open-source Python library designed to systematically evaluate and track Large Language Model (LLM) applications. It provides fine-grained instrumentation, feedback functions, and a user interface to compare and iterate on app versions, facilitating rapid development and improvement of LLM-based applications. Programmatic tools that assess the quality of inputs, outputs, and intermediate results from LLM applications, enabling scalable evaluation. Fine-grained, stack-agnostic instrumentation and comprehensive evaluations help identify failure modes and systematically iterate to improve applications. An easy-to-use interface that allows developers to compare different versions of their applications, facilitating informed decision-making and optimization. TruLens supports various use cases, including question-answering, summarization, retrieval-augmented generation, and agent-based applications.
    Starting Price: Free
  • 50
    Autoblocks AI

    Autoblocks AI

    Autoblocks AI

    Autoblocks is an AI-powered platform designed to help teams in high-stakes industries like healthcare, finance, and legal to rapidly prototype, test, and deploy reliable AI models. The platform focuses on reducing risk by simulating thousands of real-world scenarios, ensuring AI agents behave predictably and reliably before being deployed. Autoblocks enables seamless collaboration between developers and subject matter experts (SMEs), automatically capturing feedback and integrating it into the development process to continuously improve models and ensure compliance with industry standards.