Alternatives to LlamaIndex
Compare LlamaIndex alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to LlamaIndex in 2025. Compare features, ratings, user reviews, pricing, and more from LlamaIndex competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex. -
2
DataHub
DataHub
DataHub Cloud is an event-driven AI & Data Context Platform that uses active metadata for real-time visibility across your entire data ecosystem. Unlike traditional data catalogs that provide outdated snapshots, DataHub Cloud instantly propagates changes, automatically enforces policies, and connects every data source across platforms with 100+ pre-built connectors. Built on an open source foundation with a thriving community of 13,000+ members, DataHub gives you unmatched flexibility to customize and extend without vendor lock-in. DataHub Cloud is a modern metadata platform with REST and GraphQL APIs that optimize performance for complex queries, essential for AI-ready data management and ML lifecycle support. -
3
Amazon Bedrock
Amazon
Amazon Bedrock is a fully managed service that simplifies building and scaling generative AI applications by providing access to a variety of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself. Through a single API, developers can experiment with these models, customize them using techniques like fine-tuning and Retrieval Augmented Generation (RAG), and create agents that interact with enterprise systems and data sources. As a serverless platform, Amazon Bedrock eliminates the need for infrastructure management, allowing seamless integration of generative AI capabilities into applications with a focus on security, privacy, and responsible AI practices. -
4
LM-Kit.NET
LM-Kit
LM-Kit.NET is a cutting-edge, high-level inference SDK designed specifically to bring the advanced capabilities of Large Language Models (LLM) into the C# ecosystem. Tailored for developers working within .NET, LM-Kit.NET provides a comprehensive suite of powerful Generative AI tools, making it easier than ever to integrate AI-driven functionality into your applications. The SDK is versatile, offering specialized AI features that cater to a variety of industries. These include text completion, Natural Language Processing (NLP), content retrieval, text summarization, text enhancement, language translation, and much more. Whether you are looking to enhance user interaction, automate content creation, or build intelligent data retrieval systems, LM-Kit.NET offers the flexibility and performance needed to accelerate your project. -
5
StackAI
StackAI
StackAI is an enterprise AI automation platform to build end-to-end internal tools and processes with AI agents in a fully compliant and secure way. Designed for large organizations, it enables teams to automate complex workflows across operations, compliance, finance, IT, and support without heavy engineering. With StackAI you can: • Connect knowledge bases (SharePoint, Confluence, Notion, Google Drive, databases) with versioning, citations, and access controls. • Deploy AI agents as chat assistants, advanced forms, or APIs integrated into Slack, Teams, Salesforce, HubSpot, or ServiceNow. • Govern usage with enterprise security: SSO (Okta, Azure AD, Google), RBAC, audit logs, PII masking, data residency, and cost controls. • Route across OpenAI, Anthropic, Google, or local LLMs with guardrails, evaluations, and testing. • Start fast with templates for Contract Analyzer, Support Desk, RFP Response, Investment Memo Generator, and more. -
6
Pinecone
Pinecone
The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely. -
7
Qdrant
Qdrant
Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more! Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively utilise ready-made client for Python or other programming languages with additional functionality. Implement a unique custom modification of the HNSW algorithm for Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results. Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values. -
8
Snowflake
Snowflake
Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.Starting Price: $2 compute/month -
9
Zilliz Cloud
Zilliz
Zilliz Cloud is a fully managed vector database based on the popular open-source Milvus. Zilliz Cloud helps to unlock high-performance similarity searches with no previous experience or extra effort needed for infrastructure management. It is ultra-fast and enables 10x faster vector retrieval, a feat unparalleled by any other vector database management system. Zilliz includes support for multiple vector search indexes, built-in filtering, and complete data encryption in transit, a requirement for enterprise-grade applications. Zilliz is a cost-effective way to build similarity search, recommender systems, and anomaly detection into applications to keep that competitive edge.Starting Price: $0 -
10
Botpress
Botpress
The Leading Conversational AI Platform for Enterprise Automation. Botpress is a flexible, fully on-premise conversational platform for enterprises to automate conversations & workflows. Our NLU technology significantly outperforms the competitors and leads to much higher levels of customer satisfaction. Built-in collaboration with large enterprises. Whether you are a Bank or the National Defence, we got you covered. Botpress has been battle-tested by thousands of developers. You can trust it's been proven to be flexible, secure and highly scalable. With Botpress, you won’t need to hire PhD’s for your conversational projects. Our job is to keep track of the latest state-of-the-art research papers in the various fields of NLP, NLU & NDU and to deliver that in a product that non-technical people can use seamlessly. It just works. -
11
Dify
Dify
Dify is an open-source platform designed to streamline the development and operation of generative AI applications. It offers a comprehensive suite of tools, including an intuitive orchestration studio for visual workflow design, a Prompt IDE for prompt testing and refinement, and enterprise-level LLMOps capabilities for monitoring and optimizing large language models. Dify supports integration with various LLMs, such as OpenAI's GPT series and open-source models like Llama, providing flexibility for developers to select models that best fit their needs. Additionally, its Backend-as-a-Service (BaaS) features enable seamless incorporation of AI functionalities into existing enterprise systems, facilitating the creation of AI-powered chatbots, document summarization tools, and virtual assistants. -
12
DSPy
Stanford NLP
DSPy is the framework for programming—rather than prompting—language models. It allows you to iterate fast on building modular AI systems and offers algorithms for optimizing their prompts and weights, whether you're building simple classifiers, sophisticated RAG pipelines, or Agent loops.Starting Price: Free -
13
Haystack
deepset
Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning, not just keywords! Make use of and compare the latest pre-trained transformer-based languages models like OpenAI’s GPT-3, BERT, RoBERTa, DPR, and more. Build semantic search and question-answering applications that can scale to millions of documents. Building blocks for the entire product development cycle such as file converters, indexing functions, models, labeling tools, domain adaptation modules, and REST API. -
14
RAGFlow
RAGFlow
RAGFlow is an open source Retrieval-Augmented Generation (RAG) engine that enhances information retrieval by combining Large Language Models (LLMs) with deep document understanding. It offers a streamlined RAG workflow suitable for businesses of any scale, providing truthful question-answering capabilities backed by well-founded citations from various complex formatted data. Key features include template-based chunking, compatibility with heterogeneous data sources, and automated RAG orchestration.Starting Price: Free -
15
LangChain
LangChain
LangChain is a powerful, composable framework designed for building, running, and managing applications powered by large language models (LLMs). It offers an array of tools for creating context-aware, reasoning applications, allowing businesses to leverage their own data and APIs to enhance functionality. LangChain’s suite includes LangGraph for orchestrating agent-driven workflows, and LangSmith for agent observability and performance management. Whether you're building prototypes or scaling full applications, LangChain offers the flexibility and tools needed to optimize the LLM lifecycle, with seamless integrations and fault-tolerant scalability. -
16
LangGraph
LangChain
Gain precision and control with LangGraph to build agents that reliably handle complex tasks. Build and scale agentic applications with LangGraph Platform. LangGraph's flexible framework supports diverse control flows – single agent, multi-agent, hierarchical, sequential – and robustly handles realistic, complex scenarios. Ensure reliability with easy-to-add moderation and quality loops that prevent agents from veering off course. Use LangGraph Platform to templatize your cognitive architecture so that tools, prompts, and models are easily configurable with LangGraph Platform Assistants. With built-in statefulness, LangGraph agents seamlessly collaborate with humans by writing drafts for review and awaiting approval before acting. Easily inspect the agent’s actions and "time-travel" to roll back and take a different action to correct course.Starting Price: Free -
17
Langflow
Langflow
Langflow is a low-code AI builder designed to create agentic and retrieval-augmented generation applications. It offers a visual interface that allows developers to construct complex AI workflows through drag-and-drop components, facilitating rapid experimentation and prototyping. The platform is Python-based and agnostic to any model, API, or database, enabling seamless integration with various tools and stacks. Langflow supports the development of intelligent chatbots, document analysis systems, and multi-agent applications. It provides features such as dynamic input variables, fine-tuning capabilities, and the ability to create custom components. Additionally, Langflow integrates with numerous services, including Cohere, Bing, Anthropic, HuggingFace, OpenAI, and Pinecone, among others. Developers can utilize pre-built components or code their own, enhancing flexibility in AI application development. The platform also offers a free cloud service for quick deployment and test -
18
txtai
NeuML
txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.Starting Price: Free -
19
Flowise
Flowise AI
Flowise is an open-source, low-code platform that enables developers to create customized Large Language Model (LLM) applications through a user-friendly drag-and-drop interface. It supports integration with various LLMs, including LangChain and LlamaIndex, and offers over 100 integrations to facilitate the development of AI agents and orchestration flows. Flowise provides APIs, SDKs, and embedded widgets for seamless incorporation into existing systems, and is platform-agnostic, allowing deployment in air-gapped environments with local LLMs and vector databases.Starting Price: Free -
20
Cognee
Cognee
Cognee is an open source AI memory engine that transforms raw data into structured knowledge graphs, enhancing the accuracy and contextual understanding of AI agents. It supports various data types, including unstructured text, media files, PDFs, and tables, and integrates seamlessly with several data sources. Cognee employs modular ECL pipelines to process and organize data, enabling AI agents to retrieve relevant information efficiently. It is compatible with vector and graph databases and supports LLM frameworks like OpenAI, LlamaIndex, and LangChain. Key features include customizable storage options, RDF-based ontologies for smart data structuring, and the ability to run on-premises, ensuring data privacy and compliance. Cognee's distributed system is scalable, capable of handling large volumes of data, and is designed to reduce AI hallucinations by providing AI agents with a coherent and interconnected data landscape.Starting Price: $25 per month -
21
Weaviate
Weaviate
Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from your favorite ML-models, and scale seamlessly into billions of data objects. Whether you bring your own vectors or use one of the vectorization modules, you can index billions of data objects to search through. Combine multiple search techniques, such as keyword-based and vector search, to provide state-of-the-art search experiences. Improve your search results by piping them through LLM models like GPT-3 to create next-gen search experiences. Beyond search, Weaviate's next-gen vector database can power a wide range of innovative apps. Perform lightning-fast pure vector similarity search over raw vectors or data objects, even with filters. Combine keyword-based search with vector search techniques for state-of-the-art results. Use any generative model in combination with your data, for example to do Q&A over your dataset.Starting Price: Free -
22
Model Context Protocol (MCP)
Anthropic
Model Context Protocol (MCP) is an open protocol designed to standardize how applications provide context to large language models (LLMs). It acts as a universal connector, similar to a USB-C port, allowing LLMs to seamlessly integrate with various data sources and tools. MCP supports a client-server architecture, enabling programs (clients) to interact with lightweight servers that expose specific capabilities. With growing pre-built integrations and flexibility to switch between LLM vendors, MCP helps users build complex workflows and AI agents while ensuring secure data management within their infrastructure.Starting Price: Free -
23
Semantic Kernel
Microsoft
Semantic Kernel is a lightweight, open-source development kit that lets you easily build AI agents and integrate the latest AI models into your C#, Python, or Java codebase. It serves as an efficient middleware that enables rapid delivery of enterprise-grade solutions. Microsoft and other Fortune 500 companies are already leveraging Semantic Kernel because it’s flexible, modular, and observable. Backed with security-enhancing capabilities like telemetry support, hooks, and filters you’ll feel confident you’re delivering responsible AI solutions at scale. Version 1.0+ support across C#, Python, and Java means it’s reliable, and committed to nonbreaking changes. Any existing chat-based APIs are easily expanded to support additional modalities like voice and video. Semantic Kernel was designed to be future-proof, easily connecting your code to the latest AI models evolving with the technology as it advances.Starting Price: Free -
24
Milvus
Zilliz
Vector database built for scalable similarity search. Open-source, highly scalable, and blazing fast. Store, index, and manage massive embedding vectors generated by deep neural networks and other machine learning (ML) models. With Milvus vector database, you can create a large-scale similarity search service in less than a minute. Simple and intuitive SDKs are also available for a variety of different languages. Milvus is hardware efficient and provides advanced indexing algorithms, achieving a 10x performance boost in retrieval speed. Milvus vector database has been battle-tested by over a thousand enterprise users in a variety of use cases. With extensive isolation of individual system components, Milvus is highly resilient and reliable. The distributed and high-throughput nature of Milvus makes it a natural fit for serving large-scale vector data. Milvus vector database adopts a systemic approach to cloud-nativity, separating compute from storage.Starting Price: Free -
25
Mem0
Mem0
Mem0 is a self-improving memory layer designed for Large Language Model (LLM) applications, enabling personalized AI experiences that save costs and delight users. It remembers user preferences, adapts to individual needs, and continuously improves over time. Key features include enhancing future conversations by building smarter AI that learns from every interaction, reducing LLM costs by up to 80% through intelligent data filtering, delivering more accurate and personalized AI outputs by leveraging historical context, and offering easy integration compatible with platforms like OpenAI and Claude. Mem0 is perfect for projects such as customer support, where chatbots remember past interactions to reduce repetition and speed up resolution times; personal AI companions that recall preferences and past conversations for more meaningful interactions; AI agents that learn from each interaction to become more personalized and effective over time.Starting Price: $249 per month -
26
PromptQL
Hasura
PromptQL is a platform developed by Hasura that enables Large Language Models (LLMs) to access and interact with structured data sources through agentic query planning. This approach allows AI agents to retrieve and process data in a human-like manner, enhancing their ability to handle complex, real-world user queries. By providing LLMs with access to a Python runtime and a standardized SQL interface, PromptQL facilitates accurate data querying and manipulation. The platform supports integration with various data sources, including GitHub repositories and PostgreSQL databases, allowing users to build AI assistants tailored to their specific needs. PromptQL addresses the limitations of traditional search-based retrieval methods by enabling AI agents to perform tasks such as gathering relevant emails and classifying follow-ups with greater accuracy. Users can get started by connecting their data, adding their LLM API key, and building with AI. -
27
BrainAPI
Lumen Platforms Inc.
BrainAPI is the missing memory layer for AI. Large language models are powerful but forgetful — they lose context, can’t carry your preferences across platforms, and break when overloaded with information. BrainAPI solves this with a universal, secure memory store that works across ChatGPT, Claude, LLaMA and more. Think of it as Google Drive for memories: facts, preferences, knowledge, all instantly retrievable (~0.55s) and accessible with just a few lines of code. Unlike proprietary lock-in services, BrainAPI gives developers and users control over where data is stored and how it’s protected, with future-proof encryption so only you hold the key. It’s plug-and-play, fast, and built for a world where AI can finally remember.Starting Price: $0 -
28
NVIDIA NeMo Guardrails
NVIDIA
NVIDIA NeMo Guardrails is an open-source toolkit designed to enhance the safety, security, and compliance of large language model-based conversational applications. It enables developers to define, orchestrate, and enforce multiple AI guardrails, ensuring that generative AI interactions remain accurate, appropriate, and on-topic. The toolkit leverages Colang, a specialized language for designing flexible dialogue flows, and integrates seamlessly with popular AI development frameworks like LangChain and LlamaIndex. NeMo Guardrails offers features such as content safety, topic control, personal identifiable information detection, retrieval-augmented generation enforcement, and jailbreak prevention. Additionally, the recently introduced NeMo Guardrails microservice simplifies rail orchestration with API-based interaction and tools for enhanced guardrail management and maintenance. -
29
MemMachine
MemVerge
An open-source memory layer for advanced AI agents. It enables AI-powered applications to learn, store, and recall data and preferences from past sessions to enrich future interactions. MemMachine’s memory layer persists across multiple sessions, agents, and large language models, building a sophisticated, evolving user profile. It transforms AI chatbots into personalized, context-aware AI assistants designed to understand and respond with better precision and depth.Starting Price: $2,500 per month -
30
Hyperspell
Hyperspell
Hyperspell is an end-to-end memory and context layer for AI agents that lets you build data-powered, context-aware applications without managing the underlying pipeline. It ingests data continuously from user-connected sources (e.g., drive, docs, chat, calendar), builds a bespoke memory graph, and maintains context so future queries are informed by past interactions. Hyperspell supports persistent memory, context engineering, and grounded generation, producing structured or LLM-ready summaries from the memory graph. It integrates with your choice of LLM while enforcing security standards and keeping data private and auditable. With one-line integration and pre-built components for authentication and data access, Hyperspell abstracts away the work of indexing, chunking, schema extraction, and memory updates. Over time, it “learns” from interactions; relevant answers reinforce context and improve future performance. -
31
Liminary
Liminary
Liminary is a knowledge-management platform designed to serve as a digital “knowledge companion” for professionals working with large volumes of research, content, or information. It enables users to capture and organise data from multiple formats, including articles, PDFs, videos, and meeting transcripts, into a unified library where each item becomes a structured “source.” When you save content, you can highlight key insights, annotate with personal notes, and build collections around projects or themes. Liminary then supports synthesis by automatically detecting connections between ideas, surfacing patterns you might overlook, and enabling you to ask questions. The platform also allows users to create output artefacts, such as research reports, investment memos, marketing briefs, or strategy decks that draw from their saved knowledge with source citations embedded. -
32
Qubole
Qubole
Qubole is a simple, open, and secure Data Lake Platform for machine learning, streaming, and ad-hoc analytics. Our platform provides end-to-end services that reduce the time and effort required to run Data pipelines, Streaming Analytics, and Machine Learning workloads on any cloud. No other platform offers the openness and data workload flexibility of Qubole while lowering cloud data lake costs by over 50 percent. Qubole delivers faster access to petabytes of secure, reliable and trusted datasets of structured and unstructured data for Analytics and Machine Learning. Users conduct ETL, analytics, and AI/ML workloads efficiently in end-to-end fashion across best-of-breed open source engines, multiple formats, libraries, and languages adapted to data volume, variety, SLAs and organizational policies. -
33
Apache Hive
Apache Software Foundation
The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API. -
34
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker. -
35
Chroma
Chroma
Chroma is an AI-native open-source embedding database. Chroma has all the tools you need to use embeddings. Chroma is building the database that learns. Pick up an issue, create a PR, or participate in our Discord and let the community know what features you would like.Starting Price: Free -
36
VeloDB
VeloDB
Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools. -
37
SuperAGI SuperCoder
SuperAGI
SuperAGI SuperCoder is an open-source autonomous system that combines AI-native dev platform & AI agents to enable fully autonomous software development starting with python language & frameworks SuperCoder 2.0 leverages LLMs & Large Action Model (LAM) fine-tuned for python code generation leading to one shot or few shot python functional coding with significantly higher accuracy across SWE-bench & Codebench As an autonomous system, SuperCoder 2.0 combines software guardrails specific to development framework starting with Flask & Django with SuperAGI’s Generally Intelligent Developer Agents to deliver complex real world software systems SuperCoder 2.0 deeply integrates with existing developer stack such as Jira, Github or Gitlab, Jenkins, CSPs and QA solutions such as BrowserStack /Selenium Clouds to ensure a seamless software development experienceStarting Price: Free -
38
Agent
Agent
Bring your ideas to life with ease — with our user-friendly interface, you can build an AI-powered app in minutes. Connect GPT-3 to the internet with a Web Search block, pull in data with an HTTP request block, or chain together multiple Large Language Model (LLM) blocks. Launch your app to the world with a UI, or bring the power of language into your community & deploy your app as a Discord bot. -
39
Dynamiq
Dynamiq
Dynamiq is a platform built for engineers and data scientists to build, deploy, test, monitor and fine-tune Large Language Models for any use case the enterprise wants to tackle. Key features: 🛠️ Workflows: Build GenAI workflows in a low-code interface to automate tasks at scale 🧠 Knowledge & RAG: Create custom RAG knowledge bases and deploy vector DBs in minutes 🤖 Agents Ops: Create custom LLM agents to solve complex task and connect them to your internal APIs 📈 Observability: Log all interactions, use large-scale LLM quality evaluations 🦺 Guardrails: Precise and reliable LLM outputs with pre-built validators, detection of sensitive content, and data leak prevention 📻 Fine-tuning: Fine-tune proprietary LLM models to make them your ownStarting Price: $125/month -
40
Synthflow
Synthflow.ai
Easily create AI voice assistants to make outbound calls, answer inbound calls, and schedule appointments 24/7 - no coding required! Forget lengthy development cycles and expensive machine learning teams. With Synthflow you can build sophisticated, tailored AI agents without technical skills or coding - just bring your data and ideas. Over a dozen specialized AI agents are ready to use for question answering, document search, process automation, and more. Choose an agent as-is or customize it to suit your needs. Upload data instantly from PDFs, CSVs, PPTs, URLs and more. Your agent gets smarter with every new piece of data. No caps on storage or computing resources. Store unlimited vector data in your dedicated Pinecone environment. Gain full control and transparency over how your agent learns and improves. Give your AI agent superpowers by connecting it to any data source or service.Starting Price: €25 per month -
41
LangSmith
LangChain
Unexpected results happen all the time. With full visibility into the entire chain sequence of calls, you can spot the source of errors and surprises in real time with surgical precision. Software engineering relies on unit testing to build performant, production-ready applications. LangSmith provides that same functionality for LLM applications. Spin up test datasets, run your applications over them, and inspect results without having to leave LangSmith. LangSmith enables mission-critical observability with only a few lines of code. LangSmith is designed to help developers harness the power–and wrangle the complexity–of LLMs. We’re not only building tools. We’re establishing best practices you can rely on. Build and deploy LLM applications with confidence. Application-level usage stats. Feedback collection. Filter traces, cost and performance measurement. Dataset curation, compare chain performance, AI-assisted evaluation, and embrace best practices. -
42
PuppyGraph
PuppyGraph
PuppyGraph empowers you to seamlessly query one or multiple data stores as a unified graph model. Graph databases are expensive, take months to set up, and need a dedicated team. Traditional graph databases can take hours to run multi-hop queries and struggle beyond 100GB of data. A separate graph database complicates your architecture with brittle ETLs and inflates your total cost of ownership (TCO). Connect to any data source anywhere. Cross-cloud and cross-region graph analytics. No complex ETLs or data replication is required. PuppyGraph enables you to query your data as a graph by directly connecting to your data warehouses and lakes. This eliminates the need to build and maintain time-consuming ETL pipelines needed with a traditional graph database setup. No more waiting for data and failed ETL processes. PuppyGraph eradicates graph scalability issues by separating computation and storage.Starting Price: Free -
43
Apache Impala
Apache
Impala provides low latency and high concurrency for BI/analytic queries on the Hadoop ecosystem, including Iceberg, open data formats, and most cloud storage options. Impala also scales linearly, even in multitenant environments. Impala is integrated with native Hadoop security and Kerberos for authentication, and via the Ranger module, you can ensure that the right users and applications are authorized for the right data. Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment, with no redundant infrastructure or data conversion/duplication. For Apache Hive users, Impala utilizes the same metadata and ODBC driver. Like Hive, Impala supports SQL, so you don't have to worry about reinventing the implementation wheel. With Impala, more users, whether using SQL queries or BI applications, can interact with more data through a single repository and metadata stored from source through analysis.Starting Price: Free -
44
Chainlit
Chainlit
Chainlit is an open-source Python package designed to expedite the development of production-ready conversational AI applications. With Chainlit, developers can build and deploy chat-based interfaces in minutes, not weeks. The platform offers seamless integration with popular AI tools and frameworks, including OpenAI, LangChain, and LlamaIndex, allowing for versatile application development. Key features of Chainlit include multimodal capabilities, enabling the processing of images, PDFs, and other media types to enhance productivity. It also provides robust authentication options, supporting integration with providers like Okta, Azure AD, and Google. The Prompt Playground feature allows developers to iterate on prompts in context, adjusting templates, variables, and LLM settings for optimal results. For observability, Chainlit offers real-time visualization of prompts, completions, and usage metrics, ensuring efficient and trustworthy LLM operations. -
45
Presto
Presto Foundation
Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes. For data engineers who struggle with managing multiple query languages and interfaces to siloed databases and storage, Presto is the fast and reliable engine that provides one simple ANSI SQL interface for all your data analytics and your open lakehouse. Different engines for different workloads means you will have to re-platform down the road. With Presto, you get 1 familar ANSI SQL language and 1 engine for your data analytics so you don't need to graduate to another lakehouse engine. Presto can be used for interactive and batch workloads, small and large amounts of data, and scales from a few to thousands of users. Presto gives you one simple ANSI SQL interface for all of your data in various siloed data systems, helping you join your data ecosystem together. -
46
Zep
Zep
Zep ensures your assistant remembers past conversations and resurfaces them when relevant. Identify your user's intent, build semantic routers, and trigger events, all in milliseconds. Emails, phone numbers, dates, names, and more, are extracted quickly and accurately. Your assistant will never forget a user. Classify intent, emotion, and more and turn dialog into structured data. Retrieve, analyze, and extract in milliseconds; your users never wait. We don't send your data to third-party LLM services. SDKs for your favorite languages and frameworks. Automagically populate prompts with a summary of relevant past conversations, no matter how distant. Zep summarizes, embeds, and executes retrieval pipelines over your Assistant's chat history. Instantly and accurately classify chat dialog. Understand user intent and emotion. Route chains based on semantic context, and trigger events. Quickly extract business data from chat conversations.Starting Price: Free -
47
LanceDB
LanceDB
LanceDB is a developer-friendly, open source database for AI. From hyperscalable vector search and advanced retrieval for RAG to streaming training data and interactive exploration of large-scale AI datasets, LanceDB is the best foundation for your AI application. Installs in seconds and fits seamlessly into your existing data and AI toolchain. An embedded database (think SQLite or DuckDB) with native object storage integration, LanceDB can be deployed anywhere and easily scales to zero when not in use. From rapid prototyping to hyper-scale production, LanceDB delivers blazing-fast performance for search, analytics, and training for multimodal AI data. Leading AI companies have indexed billions of vectors and petabytes of text, images, and videos, at a fraction of the cost of other vector databases. More than just embedding. Filter, select, and stream training data directly from object storage to keep GPU utilization high.Starting Price: $16.03 per month -
48
AI21 Studio
AI21 Studio
AI21 Studio provides API access to Jurassic-1 large-language-models. Our models power text generation and comprehension features in thousands of live applications. Take on any language task. Our Jurassic-1 models are trained to follow natural language instructions and require just a few examples to adapt to new tasks. Use our specialized APIs for common tasks like summarization, paraphrasing and more. Access superior results at a lower cost without reinventing the wheel. Need to fine-tune your own custom model? You're just 3 clicks away. Training is fast, affordable and trained models are deployed immediately. Give your users superpowers by embedding an AI co-writer in your app. Drive user engagement and success with features like long-form draft generation, paraphrasing, repurposing and custom auto-complete.Starting Price: $29 per month -
49
Vertesia
Vertesia
Vertesia is a unified, low-code generative AI platform that enables enterprise teams to rapidly build, deploy, and operate GenAI applications and agents at scale. Designed for both business professionals and IT specialists, Vertesia offers a frictionless development experience, allowing users to go from prototype to production without extensive timelines or heavy infrastructure. It supports multiple generative AI models from leading inference providers, providing flexibility and preventing vendor lock-in. Vertesia's agentic retrieval-augmented generation (RAG) pipeline enhances generative AI accuracy and performance by automating and accelerating content preparation, including intelligent document processing and semantic chunking. With enterprise-grade security, SOC2 compliance, and support for leading cloud infrastructures like AWS, GCP, and Azure, Vertesia ensures secure and scalable deployments. -
50
Baidu Palo
Baidu AI Cloud
Palo helps enterprises to create the PB-level MPP architecture data warehouse service within several minutes and import the massive data from RDS, BOS, and BMR. Thus, Palo can perform the multi-dimensional analytics of big data. Palo is compatible with mainstream BI tools. Data analysts can analyze and display the data visually and gain insights quickly to assist decision-making. It has the industry-leading MPP query engine, with column storage, intelligent index,and vector execution functions. It can also provide in-library analytics, window functions, and other advanced analytics functions. You can create a materialized view and change the table structure without the suspension of service. It supports flexible and efficient data recovery.