NVIDIA NeMo Guardrails
NVIDIA NeMo Guardrails is an open-source toolkit designed to enhance the safety, security, and compliance of large language model-based conversational applications. It enables developers to define, orchestrate, and enforce multiple AI guardrails, ensuring that generative AI interactions remain accurate, appropriate, and on-topic. The toolkit leverages Colang, a specialized language for designing flexible dialogue flows, and integrates seamlessly with popular AI development frameworks like LangChain and LlamaIndex. NeMo Guardrails offers features such as content safety, topic control, personal identifiable information detection, retrieval-augmented generation enforcement, and jailbreak prevention. Additionally, the recently introduced NeMo Guardrails microservice simplifies rail orchestration with API-based interaction and tools for enhanced guardrail management and maintenance.
Learn more
Hyperbrowser
Hyperbrowser is a platform for running and scaling headless browsers in secure, isolated containers, built for web automation and AI-driven use cases. It enables users to automate tasks like web scraping, testing, and form filling, and to scrape and structure web data at scale for analysis and insights. Hyperbrowser integrates with AI agents to facilitate browsing, data collection, and interaction with web applications. It offers features such as automatic captcha solving to streamline automation workflows, stealth mode to bypass bot detection, and session management with logging, debugging, and secure resource isolation. The platform supports over 10,000 concurrent browsers with sub-millisecond latency, ensuring scalable and reliable browsing with a 99.9% uptime guarantee. Hyperbrowser is compatible with various tech stacks, including Python and Node.js, and provides both synchronous and asynchronous clients for seamless integration.
Learn more
Llama Guard
Llama Guard is an open-source safeguard model developed by Meta AI to enhance the safety of large language models in human-AI conversations. It functions as an input-output filter, classifying both prompts and responses into safety risk categories, including toxicity, hate speech, and hallucinations. Trained on a curated dataset, Llama Guard achieves performance on par with or exceeding existing moderation tools like OpenAI's Moderation API and ToxicChat. Its instruction-tuned architecture allows for customization, enabling developers to adapt its taxonomy and output formats to specific use cases. Llama Guard is part of Meta's broader "Purple Llama" initiative, which combines offensive and defensive security strategies to responsibly deploy generative AI models. The model weights are publicly available, encouraging further research and adaptation to meet evolving AI safety needs.
Learn more
BentoML
Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
Learn more