Audience
Individuals wanting a solution to detect bugs and security issues
About Jazzer
Jazzer is a coverage-guided, in-process fuzzer for the JVM platform developed by Code Intelligence. It is based on libFuzzer and brings many of its instrumentation-powered mutation features to the JVM. You can use Docker to try out Jazzer's autofuzz mode, which automatically generates arguments to a given Java function and reports unexpected exceptions and detected security issues. You can also use GitHub release archives to run a standalone Jazzer binary that starts its own JVM configured for fuzzing.
Other Popular Alternatives & Related Software
LibFuzzer
LibFuzzer is an in-process, coverage-guided, evolutionary fuzzing engine. LibFuzzer is linked with the library under test, and feeds fuzzed inputs to the library via a specific fuzzing entry point (or target function); the fuzzer then tracks which areas of the code are reached, and generates mutations on the corpus of input data in order to maximize the code coverage. The code coverage information for libFuzzer is provided by LLVM’s SanitizerCoverage instrumentation. LibFuzzer is still fully supported in that important bugs will get fixed. The first step in using libFuzzer on a library is to implement a fuzz target, a function that accepts an array of bytes and does something interesting with these bytes using the API under test. Note that this fuzz target does not depend on libFuzzer in any way so it is possible and even desirable to use it with other fuzzing engines like AFL and/or Radamsa.
Learn more
american fuzzy lop
American fuzzy lop is a security-oriented fuzzer that employs a novel type of compile-time instrumentation and genetic algorithms to automatically discover clean, interesting test cases that trigger new internal states in the targeted binary. This substantially improves the functional coverage for the fuzzed code. The compact synthesized corpora produced by the tool are also useful for seeding other, more labor or resource-intensive testing regimes down the road. Compared to other instrumented fuzzers, afl-fuzz is designed to be practical, it has a modest performance overhead, uses a variety of highly effective fuzzing strategies and effort minimization tricks, requires essentially no configuration, and seamlessly handles complex, real-world use cases, say, common image parsing or file compression libraries. It's an instrumentation-guided genetic fuzzer capable of synthesizing complex file semantics in a wide range of non-trivial targets.
Learn more
go-fuzz
Go-fuzz is a coverage-guided fuzzing solution for testing Go packages. Fuzzing is mainly applicable to packages that parse complex inputs (both text and binary) and is especially useful for hardening systems that parse inputs from potentially malicious users (anything accepted over a network). go-fuzz has recently added preliminary support for fuzzing Go Modules. If you encounter a problem with modules, please file an issue with details. Data is a random input generated by go-fuzz, note that in most cases it is invalid. The function must return 1 if the fuzzer should increase the priority of the given input during subsequent fuzzing if the input must not be added to the corpus even if it gives new coverage, and 0 otherwise; other values are reserved for future use. The fuzz function must be in a package that go-fuzz can import. This means the code you want to test can't be in package main. Fuzzing internal packages is supported, however.
Learn more
Atheris
Atheris is a coverage-guided Python fuzzing engine. It supports fuzzing of Python code, but also native extensions written for CPython. Atheris is based on libFuzzer. When fuzzing native code, Atheris can be used to catch extra bugs. Atheris supports Linux (32- and 64-bit) and Mac OS X, with Python versions 3.6-3.10. It comes with a built-in libFuzzer, which is fine for fuzzing Python code. If you plan to fuzz native extensions, you may need to build from source to ensure the libFuzzer version in Atheris matches your Clang version. Atheris relies on libFuzzer, which is distributed with Clang. Apple Clang doesn't come with libFuzzer, so you'll need to install a new version of LLVM. Atheris is based on a coverage-guided mutation-based fuzzer (LibFuzzer). This has the advantage of not requiring any grammar definition for generating inputs, making its setup easier. The disadvantage is that it will be harder for the fuzzer to generate inputs for code that parses complex data types.
Learn more
Pricing
Starting Price:
Free
Free Version:
Free Version available.
Integrations
Company Information
Code Intelligence
Germany
github.com/CodeIntelligenceTesting/jazzer
Other Useful Business Software
MongoDB Atlas runs apps anywhere
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Product Details
Platforms Supported
Windows
Mac
Linux
Training
Documentation
Live Online
Webinars
In Person
Videos
Support
Online