Alternatives to IntelliHub
Compare IntelliHub alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to IntelliHub in 2025. Compare features, ratings, user reviews, pricing, and more from IntelliHub competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex. -
2
Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
-
3
Keras
Keras
Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API. -
4
NVIDIA DIGITS
NVIDIA DIGITS
The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging. -
5
Amazon EC2 P4 Instances
Amazon
Amazon EC2 P4d instances deliver high performance for machine learning training and high-performance computing applications in the cloud. Powered by NVIDIA A100 Tensor Core GPUs, they offer industry-leading throughput and low-latency networking, supporting 400 Gbps instance networking. P4d instances provide up to 60% lower cost to train ML models, with an average of 2.5x better performance for deep learning models compared to previous-generation P3 and P3dn instances. Deployed in hyperscale clusters called Amazon EC2 UltraClusters, P4d instances combine high-performance computing, networking, and storage, enabling users to scale from a few to thousands of NVIDIA A100 GPUs based on project needs. Researchers, data scientists, and developers can utilize P4d instances to train ML models for use cases such as natural language processing, object detection and classification, and recommendation engines, as well as to run HPC applications like pharmaceutical discovery and more.Starting Price: $11.57 per hour -
6
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow. -
7
Caffe
BAIR
Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU. -
8
Comet
Comet
Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.Starting Price: $179 per user per month -
9
TFLearn
TFLearn
TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations and more. The high-level API currently supports most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks. -
10
Hive AutoML
Hive
Build and deploy deep learning models for custom use cases. Our automated machine learning process allows customers to create powerful AI solutions built on our best-in-class models and tailored to the specific challenges they face. Digital platforms can quickly create models specifically made to fit their guidelines and needs. Build large language models for specialized use cases such as customer and technical support bots. Create image classification models to better understand image libraries for search, organization, and more. -
11
DeepSpeed
Microsoft
DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training. DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU. DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.Starting Price: Free -
12
Exafunction
Exafunction
Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results. -
13
Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
-
14
Amazon EC2 Trn1 Instances
Amazon
Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.Starting Price: $1.34 per hour -
15
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
16
Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have contributed to the popularity of deep learning by reducing the effort and skills needed to design, train, and use deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) provides a consistent way to run these deep-learning frameworks as a service on Kubernetes. The FfDL platform uses a microservices architecture to reduce coupling between components, keep each component simple and as stateless as possible, isolate component failures, and allow each component to be developed, tested, deployed, scaled, and upgraded independently. Leveraging the power of Kubernetes, FfDL provides a scalable, resilient, and fault-tolerant deep-learning framework. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes.
-
17
Qualcomm Cloud AI SDK
Qualcomm
The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications. -
18
Horovod
Horovod
Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.Starting Price: Free -
19
PaddlePaddle
PaddlePaddle
PaddlePaddle is based on Baidu's years of deep learning technology research and business applications and integrates deep learning core framework, basic model library, end-to-end development kit, tool components and service platform. It was officially open-sourced in 2016 and is a comprehensive An industry-level deep learning platform with open source, leading technology, and complete functions. The flying paddle is derived from industrial practice and has always been committed to in-depth integration with the industry. At present, flying paddles have been widely used in industry, agriculture, and service industries, serving 3.2 million developers, and working with partners to help more and more industries complete AI empowerment. -
20
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data. -
21
Autogon
Autogon
Autogon is a leading AI and machine learning company, that simplifies complex technology to empower businesses with accessible, cutting-edge solutions for data-driven decisions and global competitiveness. Discover the empowering potential of Autogon models as they enable industries to leverage the power of AI, fostering innovation and fueling growth across diverse sectors. Experience the future of AI with Autogon Qore, your all-in-one solution for image classification, text generation, visual Q&A, sentiment analysis, voice cloning, and more. Empower your business with cutting-edge AI capabilities and innovation. Make informed decisions, streamline operations, and drive growth without the need for extensive technical expertise. Empower engineers, analysts, and scientists to harness the full potential of artificial intelligence and machine learning for their projects and research. Create custom software using clear APIs and integration SDKs. -
22
Peltarion
Peltarion
The Peltarion Platform is a low-code deep learning platform that allows you to build commercially viable AI-powered solutions, at speed and at scale. The platform allows you to build, tweak, fine-tune and deploy deep learning models. It is end-to-end, and lets you do everything from uploading data to building models and putting them into production. The Peltarion Platform and its precursor have been used to solve problems for organizations like NASA, Tesla, Dell, and Harvard. Build your own AI models or use our pre-trained ones. Just drag & drop, even the cutting-edge ones! Own the whole development process from building, training, tweaking to deploying AI. All under one hood. Operationalize AI and drive business value, with the help of our platform. Our Faster AI course is created for users who have no prior knowledge of AI. After completing seven short modules, users will be able to design and tweak their own AI models on the Peltarion platform. -
23
VisionPro Deep Learning
Cognex
VisionPro Deep Learning is the best-in-class deep learning-based image analysis software designed for factory automation. Its field-tested algorithms are optimized specifically for machine vision, with a graphical user interface that simplifies neural network training without compromising performance. VisionPro Deep Learning solves complex applications that are too challenging for traditional machine vision alone, while providing a consistency and speed that aren’t possible with human inspection. When combined with VisionPro’s rule-based vision libraries, automation engineers can easily choose the best the tool for the task at hand. VisionPro Deep Learning combines a comprehensive machine vision tool library with advanced deep learning tools inside a common development and deployment framework. It simplifies the development of highly variable vision applications. -
24
Deci
Deci AI
Easily build, optimize, and deploy fast & accurate models with Deci’s deep learning development platform powered by Neural Architecture Search. Instantly achieve accuracy & runtime performance that outperform SoTA models for any use case and inference hardware. Reach production faster with automated tools. No more endless iterations and dozens of different libraries. Enable new use cases on resource-constrained devices or cut up to 80% of your cloud compute costs. Automatically find accurate & fast architectures tailored for your application, hardware and performance targets with Deci’s NAS based AutoNAC engine. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. -
25
Automation Hero
Automation Hero
Automation Hero's end-to-end platform takes a democratized, bottom-up approach to intelligent automation. With a no-code GUI, users can easily build automations ranging from mundane and manual works tasks and complex business processes, adding in AI at any point without relying on data scientists or IT. The platform includes Hero_Sonar for process mining, Hero_Go for screen scraping, AI Studio to upload or build/train AI models and Flow Studio to build automation flows (with optional AI models) and Robin, Automation Hero’s personal automation assistant, for human-in-the-loop integration. Robin also serves as a feedback loop to improve AI models. Automation Hero is available on-premise or in the cloud. Pricing is consumption-based and includes built-in orchestration.Starting Price: $6 per node -
26
Neuri
Neuri
We conduct and implement cutting-edge research on artificial intelligence to create real advantage in financial investment. Illuminating the financial market with ground-breaking neuro-prediction. We combine novel deep reinforcement learning algorithms and graph-based learning with artificial neural networks for modeling and predicting time series. Neuri strives to generate synthetic data emulating the global financial markets, testing it with complex simulations of trading behavior. We bet on the future of quantum optimization in enabling our simulations to surpass the limits of classical supercomputing. Financial markets are highly fluid, with dynamics evolving over time. As such we build AI algorithms that adapt and learn continuously, in order to uncover the connections between different financial assets, classes and markets. The application of neuroscience-inspired models, quantum algorithms and machine learning to systematic trading at this point is underexplored. -
27
RapidMiner
Altair
RapidMiner is reinventing enterprise AI so that anyone has the power to positively shape the future. We’re doing this by enabling ‘data loving’ people of all skill levels, across the enterprise, to rapidly create and operate AI solutions to drive immediate business impact. We offer an end-to-end platform that unifies data prep, machine learning, and model operations with a user experience that provides depth for data scientists and simplifies complex tasks for everyone else. Our Center of Excellence methodology and the RapidMiner Academy ensures customers are successful, no matter their experience or resource levels. Simplify operations, no matter how complex models are, or how they were created. Deploy, evaluate, compare, monitor, manage and swap any model. Solve your business issues faster with sharper insights and predictive models, no one understands the business problem like you do.Starting Price: Free -
28
MInD Platform
Machine Intelligence
sing our MIND platform, we develop a solution for your problem. Then, we train your staff to maintain the solution and refit the underlying models if needed. Businesses in the industrial, medical, and consumer service sectors use our products and services to automate the processes that, until recently, only humans were able to do, for example: Checking the quality of products by visual inspection. Providing quality assurance in the food industry. Counting and classifying cells or chromosomes in biomedicine. Analyzing performance in the gaming industry. Measuring geometrical characteristics (position, size, profile, distance, angle. Tracking objects in agriculture. Performing time series analyses in healthcare and sport. With our MInD platform, you can build end-to-end AI solutions in your business. It gives you all the necessary tools for the five stages of developing deep learning solutions. -
29
Determined AI
Determined AI
Distributed training without changing your model code, determined takes care of provisioning machines, networking, data loading, and fault tolerance. Our open source deep learning platform enables you to train models in hours and minutes, not days and weeks. Instead of arduous tasks like manual hyperparameter tuning, re-running faulty jobs, and worrying about hardware resources. Our distributed training implementation outperforms the industry standard, requires no code changes, and is fully integrated with our state-of-the-art training platform. With built-in experiment tracking and visualization, Determined records metrics automatically, makes your ML projects reproducible and allows your team to collaborate more easily. Your researchers will be able to build on the progress of their team and innovate in their domain, instead of fretting over errors and infrastructure. -
30
Amazon EC2 G4 Instances
Amazon
Amazon EC2 G4 instances are optimized for machine learning inference and graphics-intensive applications. It offers a choice between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad). G4dn instances combine NVIDIA T4 GPUs with custom Intel Cascade Lake CPUs, providing a balance of compute, memory, and networking resources. These instances are ideal for deploying machine learning models, video transcoding, game streaming, and graphics rendering. G4ad instances, featuring AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, deliver cost-effective solutions for graphics workloads. Both G4dn and G4ad instances support Amazon Elastic Inference, allowing users to attach low-cost GPU-powered inference acceleration to Amazon EC2 and reduce deep learning inference costs. They are available in various sizes to accommodate different performance needs and are integrated with AWS services such as Amazon SageMaker, Amazon ECS, and Amazon EKS. -
31
Bright Cluster Manager
NVIDIA
NVIDIA Bright Cluster Manager offers fast deployment and end-to-end management for heterogeneous high-performance computing (HPC) and AI server clusters at the edge, in the data center, and in multi/hybrid-cloud environments. It automates provisioning and administration for clusters ranging in size from a couple of nodes to hundreds of thousands, supports CPU-based and NVIDIA GPU-accelerated systems, and enables orchestration with Kubernetes. Heterogeneous high-performance Linux clusters can be quickly built and managed with NVIDIA Bright Cluster Manager, supporting HPC, machine learning, and analytics applications that span from core to edge to cloud. NVIDIA Bright Cluster Manager is ideal for heterogeneous environments, supporting Arm® and x86-based CPU nodes, and is fully optimized for accelerated computing with NVIDIA GPUs and NVIDIA DGX™ systems. -
32
DataMelt
jWork.ORG
DataMelt (or "DMelt") is an environment for numeric computation, data analysis, data mining, computational statistics, and data visualization. DataMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using Java API. Elements of symbolic computations using Octave/Matlab scripting are supported. DataMelt is a computational environment for Java platform. It can be used with different programming languages on different operating systems. Unlike other statistical programs, it is not limited to a single programming language. This software combines the world's most-popular enterprise language, Java, with the most popular scripting language used in data science, such as Jython (Python), Groovy, JRuby.Starting Price: $0 -
33
Valohai
Valohai
Models are temporary, pipelines are forever. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform that automates everything from data extraction to model deployment. Automate everything from data extraction to model deployment. Store every single model, experiment and artifact automatically. Deploy and monitor models in a managed Kubernetes cluster. Point to your code & data and hit run. Valohai launches workers, runs your experiments and shuts down the instances for you. Develop through notebooks, scripts or shared git projects in any language or framework. Expand endlessly through our open API. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable.Starting Price: $560 per month -
34
MatConvNet
VLFeat
The VLFeat open source library implements popular computer vision algorithms specializing in image understanding and local features extraction and matching. Algorithms include Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, agglomerative information bottleneck, SLIC superpixels, quick shift superpixels, large scale SVM training, and many others. It is written in C for efficiency and compatibility, with interfaces in MATLAB for ease of use, and detailed documentation throughout. It supports Windows, Mac OS X, and Linux. MatConvNet is a MATLAB toolbox implementing Convolutional Neural Networks (CNNs) for computer vision applications. It is simple, efficient, and can run and learn state-of-the-art CNNs. Many pre-trained CNNs for image classification, segmentation, face recognition, and text detection are available. -
35
Dragonfly 3D World
Dragonfly
Dragonfly 3D World by Object Research Systems (ORS) is a comprehensive software platform for multidimensional image visualization, analysis, and collaboration in scientific and industrial fields. It provides powerful tools to visualize, process, and interpret 2D, 3D, and 4D imaging data acquired through modalities such as CT, MRI, electron microscopy, and more. Dragonfly supports real-time volume rendering, surface rendering, and orthogonal slicing, allowing users to explore complex structures interactively. With its AI integration, users can apply deep learning for image segmentation, classification, and object detection. It offers advanced quantitative analysis tools, including region-of-interest analysis, measurements, and statistical evaluations. Its intuitive graphical user interface enables researchers to build reproducible workflows and perform batch processing. -
36
CerebrumX AI Powered Connected Vehicle Data Platform - ADLP is the industry’s first AI-driven Augmented Deep Learning Connected Vehicle Data Platform that collects & homogenizes this vehicle data from millions of vehicles, in real-time, and enriches it with augmented data to generate deep & contextual insights. ADLP provides a plug-in to manage and maintain Data Privacy, Anonymization and Consent Management at the source, to ensure that any personal information is treated based on the user consent. CerebrumX takes pride in bringing privacy to everything it does, going beyond just compliance with its white-label app and web solution.
-
37
ABEJA Platform
ABEJA
The ABEJA platform is an innovative AI platform consisting of cutting-edge AI technologies ranging from IoT, Big Data and Deep Learning. While the amount of data circulation was 4.4 zettabytes in 2013, the amount of data circulation is expected to reach 44 zettabytes in 2020. How do we accumulate and utilize the mass and diverse sets of data? Additionally, how do we derive new value out of the data? ABEJA Platform is the world’s most advanced AI platform technology, which promote the utilization of all kinds of data by tackling technological problems that will become more complicated and serious in the future. Provides high-level image analysis function using Deep Learning. Processes large-scale data at high speed through advanced decentralized processing. Analyses accumulated data by utilizing Machine Learning and Deep Learning. Easily outputs analysis result at any system by API. -
38
The Intel® Deep Learning SDK is a set of tools for data scientists and software developers to develop, train, and deploy deep learning solutions. The SDK encompasses a training tool and a deployment tool that can be used separately or together in a complete deep learning workflow. Easily prepare training data, design models, and train models with automated experiments and advanced visualizations. Simplify the installation and usage of popular deep learning frameworks optimized for Intel® platforms. Easily prepare training data, design models, and train models with automated experiments and advanced visualizations. Simplify the installation and usage of popular deep learning frameworks optimized for Intel® platforms. The web user interface includes an easy to use wizard to create deep learning models, with tooltips to guide you through the entire process.
-
39
SynapseAI
Habana Labs
Like our accelerator hardware, was purpose-designed to optimize deep learning performance, efficiency, and most importantly for developers, ease of use. With support for popular frameworks and models, the goal of SynapseAI is to facilitate ease and speed for developers, using the code and tools they use regularly and prefer. In essence, SynapseAI and its many tools and support are designed to meet deep learning developers where you are — enabling you to develop what and how you want. Habana-based deep learning processors, preserve software investments, and make it easy to build new models— for both training and deployment of the numerous and growing models defining deep learning, generative AI and large language models. -
40
Automaton AI
Automaton AI
With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling. -
41
Neural Designer
Artelnics
Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.Starting Price: $2495/year (per user) -
42
DeepCube
DeepCube
DeepCube focuses on the research and development of deep learning technologies that result in improved real-world deployment of AI systems. The company’s numerous patented innovations include methods for faster and more accurate training of deep learning models and drastically improved inference performance. DeepCube’s proprietary framework can be deployed on top of any existing hardware in both datacenters and edge devices, resulting in over 10x speed improvement and memory reduction. DeepCube provides the only technology that allows efficient deployment of deep learning models on intelligent edge devices. After the deep learning training phase, the resulting model typically requires huge amounts of processing and consumes lots of memory. Due to the significant amount of memory and processing requirements, today’s deep learning deployments are limited mostly to the cloud. -
43
NVIDIA Run:ai
NVIDIA
NVIDIA Run:ai is an enterprise platform designed to optimize AI workloads and orchestrate GPU resources efficiently. It dynamically allocates and manages GPU compute across hybrid, multi-cloud, and on-premises environments, maximizing utilization and scaling AI training and inference. The platform offers centralized AI infrastructure management, enabling seamless resource pooling and workload distribution. Built with an API-first approach, Run:ai integrates with major AI frameworks and machine learning tools to support flexible deployment anywhere. It also features a powerful policy engine for strategic resource governance, reducing manual intervention. With proven results like 10x GPU availability and 5x utilization, NVIDIA Run:ai accelerates AI development cycles and boosts ROI. -
44
Produvia
Produvia
Produvia is a serverless machine-learning development service. Partner with Produvia to develop and deploy machine models using serverless cloud infrastructure. Fortune 500 companies and Global 500 enterprises partner with Produvia to develop and deploy machine learning models using modern cloud infrastructure. At Produvia, we use state-of-the-art methods in machine learning and deep learning technologies to solve business problems. Organizations overspend on infrastructure costs. Modern organizations use serverless architectures to reduce server costs. Organizations are held back by complex servers and legacy code. Modern organizations use machine learning technologies to rewrite technology stacks. Companies hire software developers to write code. Modern companies use machine learning to develop software that writes code.Starting Price: $1,000 per month -
45
Ray
Anyscale
Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.Starting Price: Free -
46
OpenVINO
Intel
The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.Starting Price: Free -
47
Auger.AI
Auger.AI
Auger.AI has the most complete solution for ensuring machine learning model accuracy. Our MLRAM tool (Machine Learning Review and Monitoring) ensures your models are consistently accurate. It even computes the ROI of your predictive model! MLRAM works with any machine learning technology stack. If your ML system lifecyle doesn’t include consistent measurement of model accuracy, you’re likely losing money from inaccurate predictions. And frequent retraining of models is both expensive and, if they’re experiencing concept drift, may not fix the underlying problem. MLRAM provides value to both the data scientist and business user with features like accuracy visualization graphs, performance and accuracy alerts, anomaly detection and automated optimized retraining. Hooking up your predictive model to MLRAM is just a single line of code. We offer a free one month trial of MLRAM to qualified users. Auger.AI is the most accurate AutoML platform.Starting Price: $200 per month -
48
NVIDIA NGC
NVIDIA
NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI. -
49
Strong Analytics
Strong Analytics
Our platforms provide a trusted foundation upon which to design, build, and deploy custom machine learning and artificial intelligence solutions. Build next-best-action applications that learn, adapt, and optimize using reinforcement-learning based algorithms. Custom, continuously-improving deep learning vision models to solve your unique challenges. Predict the future using state-of-the-art forecasts. Enable smarter decisions throughout your organization with cloud based tools to monitor and analyze. The process of taking a modern machine learning application from research and ad-hoc code to a robust, scalable platform remains a key challenge for experienced data science and engineering teams. Strong ML simplifies this process with a complete suite of tools to manage, deploy, and monitor your machine learning applications. -
50
Abacus.AI
Abacus.AI
Abacus.AI is the world's first end-to-end autonomous AI platform that enables real-time deep learning at scale for common enterprise use-cases. Apply our innovative neural architecture search techniques to train custom deep learning models and deploy them on our end to end DLOps platform. Our AI engine will increase your user engagement by at least 30% with personalized recommendations. We generate recommendations that are truly personalized to individual preferences which means more user interaction and conversion. Don't waste time in dealing with data hassles. We will automatically create your data pipelines and retrain your models. We use generative modeling to produce recommendations that means even with very little data about a particular user/item you won't have a cold start.