Alternatives to Gradient

Compare Gradient alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Gradient in 2025. Compare features, ratings, user reviews, pricing, and more from Gradient competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. Gradient View Software
    Visit Website
  • 2
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Compare vs. Gradient View Software
    Visit Website
  • 3
    Google AI Studio
    Google AI Studio is a comprehensive, web-based development environment that democratizes access to Google's cutting-edge AI models, notably the Gemini family, enabling a broad spectrum of users to explore and build innovative applications. This platform facilitates rapid prototyping by providing an intuitive interface for prompt engineering, allowing developers to meticulously craft and refine their interactions with AI. Beyond basic experimentation, AI Studio supports the seamless integration of AI capabilities into diverse projects, from simple chatbots to complex data analysis tools. Users can rigorously test different prompts, observe model behaviors, and iteratively refine their AI-driven solutions within a collaborative and user-friendly environment. This empowers developers to push the boundaries of AI application development, fostering creativity and accelerating the realization of AI-powered solutions.
    Compare vs. Gradient View Software
    Visit Website
  • 4
    RunPod

    RunPod

    RunPod

    RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure.
    Compare vs. Gradient View Software
    Visit Website
  • 5
    Amazon SageMaker
    Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
  • 6
    Labelbox

    Labelbox

    Labelbox

    The training data platform for AI teams. A machine learning model is only as good as its training data. Labelbox is an end-to-end platform to create and manage high-quality training data all in one place, while supporting your production pipeline with powerful APIs. Powerful image labeling tool for image classification, object detection and segmentation. When every pixel matters, you need accurate and intuitive image segmentation tools. Customize the tools to support your specific use case, including instances, custom attributes and much more. Performant video labeling editor for cutting-edge computer vision. Label directly on the video up to 30 FPS with frame level. Additionally, Labelbox provides per frame label feature analytics enabling you to create better models faster. Creating training data for natural language intelligence has never been easier. Label text strings, conversations, paragraphs, and documents with fast & customizable classification.
  • 7
    Mistral AI

    Mistral AI

    Mistral AI

    Mistral AI is a pioneering artificial intelligence startup specializing in open-source generative AI. The company offers a range of customizable, enterprise-grade AI solutions deployable across various platforms, including on-premises, cloud, edge, and devices. Flagship products include "Le Chat," a multilingual AI assistant designed to enhance productivity in both personal and professional contexts, and "La Plateforme," a developer platform that enables the creation and deployment of AI-powered applications. Committed to transparency and innovation, Mistral AI positions itself as a leading independent AI lab, contributing significantly to open-source AI and policy development.
  • 8
    Google Colab
    Google Colab is a free, hosted Jupyter Notebook service that provides cloud-based environments for machine learning, data science, and educational purposes. It offers no-setup, easy access to computational resources such as GPUs and TPUs, making it ideal for users working with data-intensive projects. Colab allows users to run Python code in an interactive, notebook-style environment, share and collaborate on projects, and access extensive pre-built resources for efficient experimentation and learning. Colab also now offers a Data Science Agent automating analysis, from understanding the data to delivering insights in a working Colab notebook (Sequences shortened. Results for illustrative purposes. Data Science Agent may make mistakes.)
  • 9
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 10
    Cerebrium

    Cerebrium

    Cerebrium

    Deploy all major ML frameworks such as Pytorch, Onnx, XGBoost etc with 1 line of code. Don't have your own models? Deploy our prebuilt models that have been optimised to run with sub-second latency. Fine-tune smaller models on particular tasks in order to decrease costs and latency while increasing performance. It takes just a few lines of code and don't worry about infrastructure, we got it. Integrate with top ML observability platforms in order to be alerted about feature or prediction drift, compare model versions and resolve issues quickly. Discover the root causes for prediction and feature drift to resolve degraded model performance. Understand which features are contributing most to the performance of your model.
    Starting Price: $ 0.00055 per second
  • 11
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 12
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
    Starting Price: $1.34 per hour
  • 13
    Kaggle

    Kaggle

    Kaggle

    Kaggle offers a no-setup, customizable, Jupyter Notebooks environment. Access free GPUs and a huge repository of community published data & code. Inside Kaggle you’ll find all the code & data you need to do your data science work. Use over 19,000 public datasets and 200,000 public notebooks to conquer any analysis in no time.
  • 14
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 15
    Replicate

    Replicate

    Replicate

    Replicate is a platform that enables developers and businesses to run, fine-tune, and deploy machine learning models at scale with minimal effort. It offers an easy-to-use API that allows users to generate images, videos, speech, music, and text using thousands of community-contributed models. Users can fine-tune existing models with their own data to create custom versions tailored to specific tasks. Replicate supports deploying custom models using its open-source tool Cog, which handles packaging, API generation, and scalable cloud deployment. The platform automatically scales compute resources based on demand, charging users only for the compute time they consume. With robust logging, monitoring, and a large model library, Replicate aims to simplify the complexities of production ML infrastructure.
    Starting Price: Free
  • 16
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 17
    FinetuneFast

    FinetuneFast

    FinetuneFast

    FinetuneFast is your ultimate solution for finetuning AI models and deploying them quickly to start making money online with ease. Here are the key features that make FinetuneFast stand out: - Finetune your ML models in days, not weeks - The ultimate ML boilerplate for text-to-image, LLMs, and more - Build your first AI app and start earning online fast - Pre-configured training scripts for efficient model training - Efficient data loading pipelines for streamlined data processing - Hyperparameter optimization tools for improved model performance - Multi-GPU support out of the box for enhanced processing power - No-Code AI model finetuning for easy customization - One-click model deployment for quick and hassle-free deployment - Auto-scaling infrastructure for seamless scaling as your models grow - API endpoint generation for easy integration with other systems - Monitoring and logging setup for real-time performance tracking
  • 18
    Lumino

    Lumino

    Lumino

    The first integrated hardware and software compute protocol to train and fine-tune your AI models. Lower your training costs by up to 80%. Deploy in seconds with open-source model templates or bring your own model. Seamlessly debug containers with access to GPU, CPU, Memory, and other metrics. You can monitor logs in real time. Trace all models and training sets with cryptographic verified proofs for complete accountability. Control the entire training workflow with a few simple commands. Earn block rewards for adding your computer to the network. Track key metrics such as connectivity and uptime.
  • 19
    Metal

    Metal

    Metal

    Metal is your production-ready, fully-managed, ML retrieval platform. Use Metal to find meaning in your unstructured data with embeddings. Metal is a managed service that allows you to build AI products without the hassle of managing infrastructure. Integrations with OpenAI, CLIP, and more. Easily process & chunk your documents. Take advantage of our system in production. Easily plug into the MetalRetriever. Simple /search endpoint for running ANN queries. Get started with a free account. Metal API Keys to use our API & SDKs. With your API Key, you can use authenticate by populating the headers. Learn how to use our Typescript SDK to implement Metal into your application. Although we love TypeScript, you can of course utilize this library in JavaScript. Mechanism to fine-tune your spp programmatically. Indexed vector database of your embeddings. Resources that represent your specific ML use-case.
    Starting Price: $25 per month
  • 20
    Deepnote

    Deepnote

    Deepnote

    Deepnote is building the best data science notebook for teams. In the notebook, users can connect their data, explore, and analyze it with real-time collaboration and version control. Users can easily share project links with team collaborators, or with end-users to present polished assets. All of this is done through a powerful, browser-based UI that runs in the cloud. We built Deepnote because data scientists don't work alone. Features: - Sharing notebooks and projects via URL - Inviting others to view, comment and collaborate, with version control - Publishing notebooks with visualizations for presentations - Sharing datasets between projects - Set team permissions to decide who can edit vs view code - Full linux terminal access - Code completion - Automatic python package management - Importing from github - PostgreSQL DB connection
    Starting Price: Free
  • 21
    Baidu AI Cloud Machine Learning (BML)
    Baidu AI Cloud Machine Learning (BML), an end-to-end machine learning platform designed for enterprises and AI developers, can accomplish one-stop data pre-processing, model training, and evaluation, and service deployments, among others. The Baidu AI Cloud AI development platform BML is an end-to-end AI development and deployment platform. Based on the BML, users can accomplish the one-stop data pre-processing, model training and evaluation, service deployment, and other works. The platform provides a high-performance cluster training environment, massive algorithm frameworks and model cases, as well as easy-to-operate prediction service tools. Thus, it allows users to focus on the model and algorithm and obtain excellent model and prediction results. The fully hosted interactive programming environment realizes the data processing and code debugging. The CPU instance supports users to install a third-party software library and customize the environment, ensuring flexibility.
  • 22
    Modelbit

    Modelbit

    Modelbit

    Don't change your day-to-day, works with Jupyter Notebooks and any other Python environment. Simply call modelbi.deploy to deploy your model, and let Modelbit carry it — and all its dependencies — to production. ML models deployed with Modelbit can be called directly from your warehouse as easily as calling a SQL function. They can also be called as a REST endpoint directly from your product. Modelbit is backed by your git repo. GitHub, GitLab, or home grown. Code review. CI/CD pipelines. PRs and merge requests. Bring your whole git workflow to your Python ML models. Modelbit integrates seamlessly with Hex, DeepNote, Noteable and more. Take your model straight from your favorite cloud notebook into production. Sick of VPC configurations and IAM roles? Seamlessly redeploy your SageMaker models to Modelbit. Immediately reap the benefits of Modelbit's platform with the models you've already built.
  • 23
    Deep Lake

    Deep Lake

    activeloop

    Generative AI may be new, but we've been building for this day for the past 5 years. Deep Lake thus combines the power of both data lakes and vector databases to build and fine-tune enterprise-grade, LLM-based solutions, and iteratively improve them over time. Vector search does not resolve retrieval. To solve it, you need a serverless query for multi-modal data, including embeddings or metadata. Filter, search, & more from the cloud or your laptop. Visualize and understand your data, as well as the embeddings. Track & compare versions over time to improve your data & your model. Competitive businesses are not built on OpenAI APIs. Fine-tune your LLMs on your data. Efficiently stream data from remote storage to the GPUs as models are trained. Deep Lake datasets are visualized right in your browser or Jupyter Notebook. Instantly retrieve different versions of your data, materialize new datasets via queries on the fly, and stream them to PyTorch or TensorFlow.
    Starting Price: $995 per month
  • 24
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 25
    Predibase

    Predibase

    Predibase

    Declarative machine learning systems provide the best of flexibility and simplicity to enable the fastest-way to operationalize state-of-the-art models. Users focus on specifying the “what”, and the system figures out the “how”. Start with smart defaults, but iterate on parameters as much as you’d like down to the level of code. Our team pioneered declarative machine learning systems in industry, with Ludwig at Uber and Overton at Apple. Choose from our menu of prebuilt data connectors that support your databases, data warehouses, lakehouses, and object storage. Train state-of-the-art deep learning models without the pain of managing infrastructure. Automated Machine Learning that strikes the balance of flexibility and control, all in a declarative fashion. With a declarative approach, finally train and deploy models as quickly as you want.
  • 26
    Lightning AI

    Lightning AI

    Lightning AI

    Use our platform to build AI products, train, fine tune and deploy models on the cloud without worrying about infrastructure, cost management, scaling, and other technical headaches. Train, fine tune and deploy models with prebuilt, fully customizable, modular components. Focus on the science and not the engineering. A Lightning component organizes code to run on the cloud, manage its own infrastructure, cloud costs, and more. 50+ optimizations to lower cloud costs and deliver AI in weeks not months. Get enterprise-grade control with consumer-level simplicity to optimize performance, reduce cost, and lower risk. Go beyond a demo. Launch the next GPT startup, diffusion startup, or cloud SaaS ML service in days not months.
    Starting Price: $10 per credit
  • 27
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 28
    Hex

    Hex

    Hex

    Hex brings together the best of notebooks, BI, and docs into a seamless, collaborative UI. Hex is a modern Data Workspace. It makes it easy to connect to data, analyze it in collaborative SQL and Python-powered notebooks, and share work as interactive data apps and stories. Your default landing page in Hex is the Projects page. You can quickly find projects you created, as well as those shared with you and your workspace. The outline provides an easy-to-browse overview of all the cells in a project's Logic View. Every cell in the outline lists the variables it defines, and cells that return a displayed output (chart cells, Input Parameters, markdown cells, etc.) display a preview of that output. You can click any cell in the outline to automatically jump to that position in the logic.
    Starting Price: $24 per user per month
  • 29
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 30
    Valohai

    Valohai

    Valohai

    Models are temporary, pipelines are forever. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform that automates everything from data extraction to model deployment. Automate everything from data extraction to model deployment. Store every single model, experiment and artifact automatically. Deploy and monitor models in a managed Kubernetes cluster. Point to your code & data and hit run. Valohai launches workers, runs your experiments and shuts down the instances for you. Develop through notebooks, scripts or shared git projects in any language or framework. Expand endlessly through our open API. Automatically track each experiment and trace back from inference to the original training data. Everything fully auditable and shareable.
    Starting Price: $560 per month
  • 31
    Gretel

    Gretel

    Gretel.ai

    Privacy engineering tools delivered to you as APIs. Synthesize and transform data in minutes. Build trust with your users and community. Gretel’s APIs grant immediate access to creating anonymized or synthetic datasets so you can work safely with data while preserving privacy. Keeping the pace with development velocity requires faster access to data. Gretel is accelerating access to data with data privacy tools that bypass blockers and fuel Machine Learning and AI applications. Keep your data contained by running Gretel containers in your own environment or scale out workloads to the cloud in seconds with Gretel Cloud runners. Using our cloud GPUs makes it radically more effortless for developers to train and generate synthetic data. Scale workloads automatically with no infrastructure to set up and manage. Invite team members to collaborate on cloud projects and share data across teams.
  • 32
    SiliconFlow

    SiliconFlow

    SiliconFlow

    SiliconFlow is a high-performance, developer-focused AI infrastructure platform offering a unified and scalable solution for running, fine-tuning, and deploying both language and multimodal models. It provides fast, reliable inference across open source and commercial models, thanks to blazing speed, low latency, and high throughput, with flexible options such as serverless endpoints, dedicated compute, or private cloud deployments. Platform capabilities include one-stop inference, fine-tuning pipelines, and reserved GPU access, all delivered via an OpenAI-compatible API and complete with built-in observability, monitoring, and cost-efficient smart scaling. For diffusion-based tasks, SiliconFlow offers the open source OneDiff acceleration library, while its BizyAir runtime supports scalable multimodal workloads. Designed for enterprise-grade stability, it includes features like BYOC (Bring Your Own Cloud), robust security, and real-time metrics.
    Starting Price: $0.04 per image
  • 33
    SuperAnnotate

    SuperAnnotate

    SuperAnnotate

    SuperAnnotate is the world's leading platform for building the highest quality training datasets for computer vision and NLP. With advanced tooling and QA, ML and automation features, data curation, robust SDK, offline access, and integrated annotation services, we enable machine learning teams to build incredibly accurate datasets and successful ML pipelines 3-5x faster. By bringing our annotation tool and professional annotators together we've built a unified annotation environment, optimized to provide integrated software and services experience that leads to higher quality data and more efficient data pipelines.
  • 34
    FriendliAI

    FriendliAI

    FriendliAI

    FriendliAI is a generative AI infrastructure platform that offers fast, efficient, and reliable inference solutions for production environments. It provides a suite of tools and services designed to optimize the deployment and serving of large language models (LLMs) and other generative AI workloads at scale. Key offerings include Friendli Endpoints, which allow users to build and serve custom generative AI models, saving GPU costs and accelerating AI inference. It supports seamless integration with popular open source models from the Hugging Face Hub, enabling lightning-fast, high-performance inference. FriendliAI's cutting-edge technologies, such as Iteration Batching, Friendli DNN Library, Friendli TCache, and Native Quantization, contribute to significant cost savings (50–90%), reduced GPU requirements (6× fewer GPUs), higher throughput (10.7×), and lower latency (6.2×).
    Starting Price: $5.9 per hour
  • 35
    NVIDIA Run:ai
    NVIDIA Run:ai is an enterprise platform designed to optimize AI workloads and orchestrate GPU resources efficiently. It dynamically allocates and manages GPU compute across hybrid, multi-cloud, and on-premises environments, maximizing utilization and scaling AI training and inference. The platform offers centralized AI infrastructure management, enabling seamless resource pooling and workload distribution. Built with an API-first approach, Run:ai integrates with major AI frameworks and machine learning tools to support flexible deployment anywhere. It also features a powerful policy engine for strategic resource governance, reducing manual intervention. With proven results like 10x GPU availability and 5x utilization, NVIDIA Run:ai accelerates AI development cycles and boosts ROI.
  • 36
    prompteasy.ai

    prompteasy.ai

    prompteasy.ai

    You can now fine-tune GPT with absolutely zero technical skills. Enhance AI models by tailoring them to your specific needs. Prompteasy.ai helps you fine-tune AI models in a matter of seconds. We make AI tailored to your needs by helping you fine-tune it. The best part is, that you don't even have to know AI fine-tuning. Our AI models will take care of everything. We will be offering prompteasy for free as part of our initial launch. We'll be rolling out pricing plans later this year. Our vision is to make AI smart and easily accessible to anyone. We believe that the true power of AI lies in how we train and orchestrate the foundational models, as opposed to just using them off the shelf. Forget generating massive datasets, just upload relevant materials and interact with our AI through natural language. We take care of building the dataset ready for fine-tuning. You just chat with the AI, download the dataset, and fine-tune GPT.
    Starting Price: Free
  • 37
    Okareo

    Okareo

    Okareo

    Okareo is an AI development platform designed to help teams build, test, and monitor AI agents with confidence. It offers automated simulations to uncover edge cases, system conflicts, and failure points before deployment, ensuring that AI features are robust and reliable. With real-time error tracking and intelligent safeguards, Okareo helps prevent hallucinations and maintains accuracy in production environments. Okareo continuously fine-tunes AI using domain-specific data and live performance insights, boosting relevance, effectiveness, and user satisfaction. By turning agent behaviors into actionable insights, Okareo enables teams to surface what's working, what's not, and where to focus next, driving business value beyond mere logs. Designed for seamless collaboration and scalability, Okareo supports both small and large-scale AI projects, making it an essential tool for AI teams aiming to deliver high-quality AI applications efficiently.
    Starting Price: $199 per month
  • 38
    Polyaxon

    Polyaxon

    Polyaxon

    A Platform for reproducible and scalable Machine Learning and Deep Learning applications. Learn more about the suite of features and products that underpin today's most innovative platform for managing data science workflows. Polyaxon provides an interactive workspace with notebooks, tensorboards, visualizations,and dashboards. Collaborate with the rest of your team, share and compare experiments and results. Reproducible results with a built-in version control for code and experiments. Deploy Polyaxon in the cloud, on-premises or in hybrid environments, including single laptop, container management platforms, or on Kubernetes. Spin up or down, add more nodes, add more GPUs, and expand storage.
  • 39
    IBM Watson Studio
    Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
  • 40
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 41
    MLJAR Studio
    It's a desktop app with Jupyter Notebook and Python built in, installed with just one click. It includes interactive code snippets and an AI assistant to make coding faster and easier, perfect for data science projects. We manually hand crafted over 100 interactive code recipes that you can use in your Data Science projects. Code recipes detect packages available in the current environment. Install needed modules with 1-click, literally. You can create and interact with all variables available in your Python session. Interactive recipes speed-up your work. AI Assistant has access to your current Python session, variables and modules. Broad context makes it smart. Our AI Assistant was designed to solve data problems with Python programming language. It can help you with plots, data loading, data wrangling, Machine Learning and more. Use AI to quickly solve issues with code, just click Fix button. The AI assistant will analyze the error and propose the solution.
    Starting Price: $20 per month
  • 42
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 43
    Ilus AI

    Ilus AI

    Ilus AI

    The quickest way to get started with our illustration generator is to use pre-made models. If you want to depict a style or an object that is not available in the premade models you can train your own fine tune by uploading 5-15 illustrations. there are no limits to fine-tuning you can use it for illustrations icons or any assets you need. Read more about fine-tuning. Illustrations are exportable in PNG and SVG formats. Fine-tuning allows you to train the stable-diffusion AI model, on a particular object or style, and create a new model that generates images of those objects or styles. The fine-tuning will be only as good as the data you provide. Around 5-15 images are recommended for fine-tuning. Images can be of any unique object or style. Images should contain only the subject itself, without background noise or other objects. Images must not include any gradients or shadows if you want to export it as SVG later. PNG export still works fine with gradients and shadows.
    Starting Price: $0.06 per credit
  • 44
    Kubeflow

    Kubeflow

    Kubeflow

    The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes simple, portable and scalable. Our goal is not to recreate other services, but to provide a straightforward way to deploy best-of-breed open-source systems for ML to diverse infrastructures. Anywhere you are running Kubernetes, you should be able to run Kubeflow. Kubeflow provides a custom TensorFlow training job operator that you can use to train your ML model. In particular, Kubeflow's job operator can handle distributed TensorFlow training jobs. Configure the training controller to use CPUs or GPUs and to suit various cluster sizes. Kubeflow includes services to create and manage interactive Jupyter notebooks. You can customize your notebook deployment and your compute resources to suit your data science needs. Experiment with your workflows locally, then deploy them to a cloud when you're ready.
  • 45
    Azure Notebooks
    Develop and run code from anywhere with Jupyter notebooks on Azure. Get started for free. Get a better experience with a free Azure Subscription. Perfect for data scientists, developers, students, or anyone. Develop and run code in your browser regardless of industry or skillset. Supporting more languages than any other platform including Python 2, Python 3, R, and F#. Created by Microsoft Azure: Always accessible, always available from any browser, anywhere in the world.
  • 46
    Intel Tiber AI Cloud
    Intel® Tiber™ AI Cloud is a powerful platform designed to scale AI workloads with advanced computing resources. It offers specialized AI processors, such as the Intel Gaudi AI Processor and Max Series GPUs, to accelerate model training, inference, and deployment. Optimized for enterprise-level AI use cases, this cloud solution enables developers to build and fine-tune models with support for popular libraries like PyTorch. With flexible deployment options, secure private cloud solutions, and expert support, Intel Tiber™ ensures seamless integration, fast deployment, and enhanced model performance.
    Starting Price: Free
  • 47
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 48
    Vertex AI Notebooks
    Vertex AI Notebooks is a fully managed, scalable solution from Google Cloud that accelerates machine learning (ML) development. It provides a seamless, interactive environment for data scientists and developers to explore data, prototype models, and collaborate in real-time. With integration into Google Cloud’s vast data and ML tools, Vertex AI Notebooks supports rapid prototyping, automated workflows, and deployment, making it easier to scale ML operations. The platform’s support for both Colab Enterprise and Vertex AI Workbench ensures a flexible and secure environment for diverse enterprise needs.
    Starting Price: $10 per GB
  • 49
    LLMWare.ai

    LLMWare.ai

    LLMWare.ai

    Our open source research efforts are focused both on the new "ware" ("middleware" and "software" that will wrap and integrate LLMs), as well as building high-quality, automation-focused enterprise models available in Hugging Face. LLMWare also provides a coherent, high-quality, integrated, and organized framework for development in an open system that provides the foundation for building LLM-applications for AI Agent workflows, Retrieval Augmented Generation (RAG), and other use cases, which include many of the core objects for developers to get started instantly. Our LLM framework is built from the ground up to handle the complex needs of data-sensitive enterprise use cases. Use our pre-built specialized LLMs for your industry or we can customize and fine-tune an LLM for specific use cases and domains. From a robust, integrated AI framework to specialized models and implementation, we provide an end-to-end solution.
    Starting Price: Free
  • 50
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).