Alternatives to Google Colab

Compare Google Colab alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Google Colab in 2025. Compare features, ratings, user reviews, pricing, and more from Google Colab competitors and alternatives in order to make an informed decision for your business.

  • 1
    Google Cloud Platform
    Google Cloud is a cloud-based service that allows you to create anything from simple websites to complex applications for businesses of all sizes. New customers get $300 in free credits to run, test, and deploy workloads. All customers can use 25+ products for free, up to monthly usage limits. Use Google's core infrastructure, data analytics & machine learning. Secure and fully featured for all enterprises. Tap into big data to find answers faster and build better products. Grow from prototype to production to planet-scale, without having to think about capacity, reliability or performance. From virtual machines with proven price/performance advantages to a fully managed app development platform. Scalable, resilient, high performance object storage and databases for your applications. State-of-the-art software-defined networking products on Google’s private fiber network. Fully managed data warehousing, batch and stream processing, data exploration, Hadoop/Spark, and messaging.
    Leader badge
    Compare vs. Google Colab View Software
    Visit Website
  • 2
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. Google Colab View Software
    Visit Website
  • 3
    Teradata VantageCloud
    Teradata VantageCloud: The complete cloud analytics and data platform for AI. Teradata VantageCloud is an enterprise-grade, cloud-native data and analytics platform that unifies data management, advanced analytics, and AI/ML capabilities in a single environment. Designed for scalability and flexibility, VantageCloud supports multi-cloud and hybrid deployments, enabling organizations to manage structured and semi-structured data across AWS, Azure, Google Cloud, and on-premises systems. It offers full ANSI SQL support, integrates with open-source tools like Python and R, and provides built-in governance for secure, trusted AI. VantageCloud empowers users to run complex queries, build data pipelines, and operationalize machine learning models—all while maintaining interoperability with modern data ecosystems.
    Compare vs. Google Colab View Software
    Visit Website
  • 4
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Compare vs. Google Colab View Software
    Visit Website
  • 5
    Google AI Studio
    Google AI Studio is a comprehensive, web-based development environment that democratizes access to Google's cutting-edge AI models, notably the Gemini family, enabling a broad spectrum of users to explore and build innovative applications. This platform facilitates rapid prototyping by providing an intuitive interface for prompt engineering, allowing developers to meticulously craft and refine their interactions with AI. Beyond basic experimentation, AI Studio supports the seamless integration of AI capabilities into diverse projects, from simple chatbots to complex data analysis tools. Users can rigorously test different prompts, observe model behaviors, and iteratively refine their AI-driven solutions within a collaborative and user-friendly environment. This empowers developers to push the boundaries of AI application development, fostering creativity and accelerating the realization of AI-powered solutions.
    Compare vs. Google Colab View Software
    Visit Website
  • 6
    RunPod

    RunPod

    RunPod

    RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure.
    Compare vs. Google Colab View Software
    Visit Website
  • 7
    Amazon SageMaker
    Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
  • 8
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 9
    Azure Notebooks
    Develop and run code from anywhere with Jupyter notebooks on Azure. Get started for free. Get a better experience with a free Azure Subscription. Perfect for data scientists, developers, students, or anyone. Develop and run code in your browser regardless of industry or skillset. Supporting more languages than any other platform including Python 2, Python 3, R, and F#. Created by Microsoft Azure: Always accessible, always available from any browser, anywhere in the world.
  • 10
    Google Cloud Datalab
    An easy-to-use interactive tool for data exploration, analysis, visualization, and machine learning. Cloud Datalab is a powerful interactive tool created to explore, analyze, transform, and visualize data and build machine learning models on Google Cloud Platform. It runs on Compute Engine and connects to multiple cloud services easily so you can focus on your data science tasks. Cloud Datalab is built on Jupyter (formerly IPython), which boasts a thriving ecosystem of modules and a robust knowledge base. Cloud Datalab enables analysis of your data on BigQuery, AI Platform, Compute Engine, and Cloud Storage using Python, SQL, and JavaScript (for BigQuery user-defined functions). Whether you're analyzing megabytes or terabytes, Cloud Datalab has you covered. Query terabytes of data in BigQuery, run local analysis on sampled data, and run training jobs on terabytes of data in AI Platform seamlessly.
  • 11
    IBM Watson Studio
    Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
  • 12
    Firebase Studio
    Firebase Studio is an AI-powered full-stack development platform designed to accelerate the entire development lifecycle, from backend and frontend building to mobile app creation. It integrates AI agents like Gemini to assist in tasks such as coding, debugging, testing, and documentation. With support for various tech stacks and seamless integration with repositories from GitHub, GitLab, and Bitbucket, Firebase Studio helps developers quickly create, deploy, and monitor apps. The platform is optimized for building and testing full-stack applications, providing built-in web previews and emulators for real-time app visualization.
  • 13
    CoCalc

    CoCalc

    SageMath

    Teaching scientific software online. CoCalc is a virtual online computer lab: it takes away the pain of teaching scientific software. Every student works 100% online – inside their own, isolated workspace. Follow the progress of each student in real-time. At any time you can jump into a file of a student, right where they are working. Use TimeTravel to see each step a student took to get to the solution. Integrated chat rooms allows you to guide students directly where they work or discuss collected files with your teaching assistants. The project's Activity Log records exactly when and by whom a file was accessed. Forget any complicated software setup – everyone is able to start working in seconds! Since everyone works with exactly the same software stack, any inconsistencies between your and your students' environments are eliminated.
  • 14
    JetBrains Datalore
    Datalore is a collaborative data science and analytics platform aimed at boosting the whole analytics workflow and making work with data enjoyable for both data scientists and data savvy business teams across the enterprise. Keeping a major focus on data teams workflow, Datalore offers technical-savvy business users the ability to work together with data teams, using no-code or low-code together with the power of Jupyter notebooks. Datalore enables analytical self-service for business users, enabling them to work with data using SQL and no-code cells, build reports and deep dive into data. It offloads the core data team with simple tasks. Datalore enables analysts and data scientists to share results with ML Engineers. You can run your code on powerful CPUs or GPUs and collaborate with your colleagues in real-time.
    Starting Price: $19.90 per month
  • 15
    Jupyter Notebook

    Jupyter Notebook

    Project Jupyter

    The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.
  • 16
    Kaggle

    Kaggle

    Kaggle

    Kaggle offers a no-setup, customizable, Jupyter Notebooks environment. Access free GPUs and a huge repository of community published data & code. Inside Kaggle you’ll find all the code & data you need to do your data science work. Use over 19,000 public datasets and 200,000 public notebooks to conquer any analysis in no time.
  • 17
    Lambda

    Lambda

    Lambda

    Lambda was founded in 2012 by published AI engineers with the vision to enable a world where Superintelligence enhances human progress, by making access to computation as effortless and ubiquitous as electricity. Today, the world’s leading AI teams trust Lambda to deploy gigawatt-scale AI Factories for training and inference, engineered for security, reliability, and mission-critical performance. Lambda is where AI teams find infinite scale to produce intelligence: from prototyping on on-demand compute to serving billions of users in production, Lambda guides and equips the world's most AI-advanced organizations to securely build and deploy AI products.
  • 18
    Vast.ai

    Vast.ai

    Vast.ai

    Vast.ai is the market leader in low-cost cloud GPU rental. Use one simple interface to save 5-6X on GPU compute. Use on-demand rentals for convenience and consistent pricing. Or save a further 50% or more with interruptible instances using spot auction based pricing. Vast has an array of providers that offer different levels of security: from hobbyists up to Tier-4 data centers. Vast.ai helps you find the best pricing for the level of security and reliability you need. Use our command line interface to search the entire marketplace for offers while utilizing scriptable filters and sort options. Launch instances quickly right from the CLI and easily automate your deployment. Save an additional 50% or more by using interruptible instances and auction pricing. The highest bidding instances run; other conflicting instances are stopped.
    Starting Price: $0.20 per hour
  • 19
    Saturn Cloud

    Saturn Cloud

    Saturn Cloud

    Saturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack. Quickly spin up environments to test new ideas, then easily deploy them into production. Scale fast—from proof-of-concept to production-ready applications. Customers include NVIDIA, CFA Institute, Snowflake, Flatiron School, Nestle, and more. Get started for free at: saturncloud.io
    Leader badge
    Starting Price: $0.005 per GB per hour
  • 20
    Vertex AI Notebooks
    Vertex AI Notebooks is a fully managed, scalable solution from Google Cloud that accelerates machine learning (ML) development. It provides a seamless, interactive environment for data scientists and developers to explore data, prototype models, and collaborate in real-time. With integration into Google Cloud’s vast data and ML tools, Vertex AI Notebooks supports rapid prototyping, automated workflows, and deployment, making it easier to scale ML operations. The platform’s support for both Colab Enterprise and Vertex AI Workbench ensures a flexible and secure environment for diverse enterprise needs.
    Starting Price: $10 per GB
  • 21
    NVIDIA Brev
    NVIDIA Brev is a cloud-based platform that provides instant access to fully configured GPU environments optimized for AI and machine learning development. Its Launchables feature offers prebuilt, customizable compute setups that let developers start projects quickly without complex setup or configuration. Users can create Launchables by specifying GPU resources, Docker images, and project files, then share them easily with collaborators. The platform also offers prebuilt Launchables featuring the latest AI frameworks, microservices, and NVIDIA Blueprints to jumpstart development. NVIDIA Brev provides a seamless GPU sandbox with support for CUDA, Python, and Jupyter Lab accessible via browser or CLI. This enables developers to fine-tune, train, and deploy AI models with minimal friction and maximum flexibility.
    Starting Price: $0.04 per hour
  • 22
    Paperspace

    Paperspace

    DigitalOcean

    CORE is a high-performance computing platform built for a range of applications. CORE offers a simple point-and-click interface that makes it simple to get up and running. Run the most demanding applications. CORE offers limitless computing power on demand. Enjoy the benefits of cloud computing without the high cost. CORE for teams includes powerful tools that let you sort, filter, create, and connect users, machines, and networks. It has never been easier to get a birds-eye view of your infrastructure in a single place with an intuitive and effortless GUI. Our simple yet powerful management console makes it easy to do things like adding a VPN or Active Directory integration. Things that used to take days or even weeks can now be done with just a few clicks and even complex network configurations become easy to manage. Paperspace is used by some of the most advanced organizations in the world.
    Starting Price: $5 per month
  • 23
    Deepnote

    Deepnote

    Deepnote

    Deepnote is building the best data science notebook for teams. In the notebook, users can connect their data, explore, and analyze it with real-time collaboration and version control. Users can easily share project links with team collaborators, or with end-users to present polished assets. All of this is done through a powerful, browser-based UI that runs in the cloud. We built Deepnote because data scientists don't work alone. Features: - Sharing notebooks and projects via URL - Inviting others to view, comment and collaborate, with version control - Publishing notebooks with visualizations for presentations - Sharing datasets between projects - Set team permissions to decide who can edit vs view code - Full linux terminal access - Code completion - Automatic python package management - Importing from github - PostgreSQL DB connection
  • 24
    MLJAR Studio
    It's a desktop app with Jupyter Notebook and Python built in, installed with just one click. It includes interactive code snippets and an AI assistant to make coding faster and easier, perfect for data science projects. We manually hand crafted over 100 interactive code recipes that you can use in your Data Science projects. Code recipes detect packages available in the current environment. Install needed modules with 1-click, literally. You can create and interact with all variables available in your Python session. Interactive recipes speed-up your work. AI Assistant has access to your current Python session, variables and modules. Broad context makes it smart. Our AI Assistant was designed to solve data problems with Python programming language. It can help you with plots, data loading, data wrangling, Machine Learning and more. Use AI to quickly solve issues with code, just click Fix button. The AI assistant will analyze the error and propose the solution.
    Starting Price: $20 per month
  • 25
    Dataiku

    Dataiku

    Dataiku

    Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries.
  • 26
    Zerve AI

    Zerve AI

    Zerve AI

    Merging the best of a notebook and an IDE into one integrated coding environment, experts can explore their data and write stable code at the same time with fully automated cloud infrastructure. Zerve’s data science development environment gives data science and ML teams a unified space to explore, collaborate, build, and deploy data science & AI projects like never before. Zerve offers true language interoperability, meaning that as well as being able to use Python, R, SQL, or Markdown all in the same canvas, users can connect these code blocks to each other. No more long-running code blocks or containers, with Zerve enjoying unlimited parallelization at any stage of the development journey. Analysis artifacts are automatically serialized, versioned, stored, and preserved for later use, meaning easily changing a step in the data flow without needing to rerun any preceding steps. Fine-grained selection of compute resources and extra memory for complex data transformation.
  • 27
    Anaconda

    Anaconda

    Anaconda

    Empowering the enterprise to do real data science at speed and scale with a full-featured machine learning platform. Spend less time managing tools and infrastructure, so you can focus on building machine learning applications that move your business forward. Anaconda Enterprise takes the headache out of ML operations, puts open-source innovation at your fingertips, and provides the foundation for serious data science and machine learning production without locking you into specific models, templates, or workflows. Software developers and data scientists can work together with AE to build, test, debug, and deploy models using their preferred languages and tools. AE provides access to both notebooks and IDEs so developers and data scientists can work together more efficiently. They can also choose from example projects and preconfigured projects. AE projects are automatically containerized so they can be moved between environments with ease.
  • 28
    Gradient

    Gradient

    Gradient

    Explore a new library or dataset in a notebook. Automate preprocessing, training, or testing with a 2orkflow. Bring your application to life with a deployment. Use notebooks, workflows, and deployments together or independently. Compatible with everything. Gradient supports all major frameworks and libraries. Gradient is powered by Paperspace's world-class GPU instances. Move faster with source control integration. Connect to GitHub to manage all your work & compute resources with git. Launch a GPU-enabled Jupyter Notebook from your browser in seconds. Use any library or framework. Easily invite collaborators or share a public link. A simple cloud workspace that runs on free GPUs. Get started in seconds with a notebook environment that's easy to use and share. Perfect for ML developers. A powerful no-fuss environment with loads of features that just works. Choose a pre-built template or bring your own. Try a free GPU!
    Starting Price: $8 per month
  • 29
    Alteryx

    Alteryx

    Alteryx

    Step into a new era of analytics with the Alteryx AI Platform. Empower your organization with automated data preparation, AI-powered analytics, and approachable machine learning — all with embedded governance and security. Welcome to the future of data-driven decisions for every user, every team, every step of the way. Empower your teams with an easy, intuitive user experience allowing everyone to create analytic solutions that improve productivity, efficiency, and the bottom line. Build an analytics culture with an end-to-end cloud analytics platform and transform data into insights with self-service data prep, machine learning, and AI-generated insights. Reduce risk and ensure your data is fully protected with the latest security standards and certifications. Connect to your data and applications with open API standards.
  • 30
    Outerbounds

    Outerbounds

    Outerbounds

    Design and develop data-intensive projects with human-friendly, open-source Metaflow. Run, scale, and deploy them reliably on the fully managed Outerbounds platform. One platform for all your ML and data science projects. Access data securely from your existing data warehouses. Compute with a cluster optimized for scale and cost. 24/7 managed orchestration for production workflows. Use results to power any application. Give your data scientists superpowers, approved by your engineers. Outerbounds Platform allows data scientists to develop rapidly, experiment at scale, and deploy to production confidently. All within the outer bounds of policies and processes defined by your engineers, running on your cloud account, fully managed by us. Security is in our DNA, not at the perimeter. The platform adapts to your policies and compliance requirements through multiple layers of security. Centralized auth, a strict permission boundary, and granular task execution roles.
  • 31
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 32
    Oracle Data Science
    A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results.
  • 33
    Oracle Machine Learning
    Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface.
  • 34
    Hex

    Hex

    Hex

    Hex brings together the best of notebooks, BI, and docs into a seamless, collaborative UI. Hex is a modern Data Workspace. It makes it easy to connect to data, analyze it in collaborative SQL and Python-powered notebooks, and share work as interactive data apps and stories. Your default landing page in Hex is the Projects page. You can quickly find projects you created, as well as those shared with you and your workspace. The outline provides an easy-to-browse overview of all the cells in a project's Logic View. Every cell in the outline lists the variables it defines, and cells that return a displayed output (chart cells, Input Parameters, markdown cells, etc.) display a preview of that output. You can click any cell in the outline to automatically jump to that position in the logic.
    Starting Price: $24 per user per month
  • 35
    Key Ward

    Key Ward

    Key Ward

    Extract, transform, manage, & process CAD, FE, CFD, and test data effortlessly. Create automatic data pipelines for machine learning, ROM, & 3D deep learning. Removing data science barriers without coding. Key Ward's platform is the first end-to-end engineering no-code solution that redefines how engineers interact with their data, experimental & CAx. Through leveraging engineering data intelligence, our software enables engineers to easily handle their multi-source data, extract direct value with our built-in advanced analytics tools, and custom-build their machine and deep learning models, all under one platform, all with a few clicks. Automatically centralize, update, extract, sort, clean, and prepare your multi-source data for analysis, machine learning, and/or deep learning. Use our advanced analytics tools on your experimental & simulation data to correlate, find dependencies, and identify patterns.
    Starting Price: €9,000 per year
  • 36
    Analance
    Combining Data Science, Business Intelligence, and Data Management Capabilities in One Integrated, Self-Serve Platform. Analance is a robust, salable end-to-end platform that combines Data Science, Advanced Analytics, Business Intelligence, and Data Management into one integrated self-serve platform. It is built to deliver core analytical processing power to ensure data insights are accessible to everyone, performance remains consistent as the system grows, and business objectives are continuously met within a single platform. Analance is focused on turning quality data into accurate predictions allowing both data scientists and citizen data scientists with point and click pre-built algorithms and an environment for custom coding. Company – Overview Ducen IT helps Business and IT users of Fortune 1000 companies with advanced analytics, business intelligence and data management through its unique end-to-end data science platform called Analance.
  • 37
    MinusX

    MinusX

    MinusX

    A Chrome extension that operates your analytics apps for you. MinusX is the fastest way to get insights from data. Interop with MinusX to modify or extend existing notebooks. Select an area and ask questions, or ask for modifications. MinusX works in your existing analytics tools like Jupyter Notebooks, Metabase, Tableau, etc. You can use minusx to create analyses and share results with your team, instantly. We have nuanced privacy controls on MinusX. Any data you share, will be used to train better, more accurate models). We never share your data with third parties. MinusX seamlessly integrates with existing tools. This means that you never have to get out of your workflow to answer questions. Since actions are first-class entities, MinusX can choose the right action for the right context. Currently, we support Claude Sonnet 3.5, GPT-4o and GPT-4o mini. We are also working on a way to let you bring your own models.
  • 38
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 39
    Gathr.ai

    Gathr.ai

    Gathr.ai

    Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500
    Leader badge
    Starting Price: $0.25/credit
  • 40
    FeatureByte

    FeatureByte

    FeatureByte

    FeatureByte is your AI data scientist streamlining the entire lifecycle so that what once took months now happens in hours. Deployed natively on Databricks, Snowflake, BigQuery, or Spark, it automates feature engineering, ideation, cataloging, custom UDFs (including transformer support), evaluation, selection, historical backfill, deployment, and serving (online or batch), all within a unified platform. FeatureByte’s GenAI‑inspired agents, data, domain, MLOps, and data science agents interactively guide teams through data acquisition, quality, feature generation, model creation, deployment orchestration, and continued monitoring. FeatureByte’s SDK and intuitive UI enable automated and semi‑automated feature ideation, customizable pipelines, cataloging, lineage tracking, approval flows, RBAC, alerts, and version control, empowering teams to build, refine, document, and serve features rapidly and reliably.
  • 41
    iGenius Crystal
    Any teams can access key insights independently by just talking — no training or data literacy skills required. Crystal can be tailored to a specific organization’s needs, meaning your teams and crystal can combine to drive actionable insights. Crystal monitors your data 24/7 and can alert you on important changes, ensuring you will get the answers you need, as well as the ones you didn’t know you needed. Available on mobile and desktop, your teams can get immediate insights anywhere without sifting through reports. Bring your use case to life in days, not months, with crystal’s user-friendly setup. Complete with low-code no-code data source connection and setup, you can make more of your existing BI investments and get immediate business value.
  • 42
    Predibase

    Predibase

    Predibase

    Declarative machine learning systems provide the best of flexibility and simplicity to enable the fastest-way to operationalize state-of-the-art models. Users focus on specifying the “what”, and the system figures out the “how”. Start with smart defaults, but iterate on parameters as much as you’d like down to the level of code. Our team pioneered declarative machine learning systems in industry, with Ludwig at Uber and Overton at Apple. Choose from our menu of prebuilt data connectors that support your databases, data warehouses, lakehouses, and object storage. Train state-of-the-art deep learning models without the pain of managing infrastructure. Automated Machine Learning that strikes the balance of flexibility and control, all in a declarative fashion. With a declarative approach, finally train and deploy models as quickly as you want.
  • 43
    Metaflow

    Metaflow

    Metaflow

    Successful data science projects are delivered by data scientists who can build, improve, and operate end-to-end workflows independently, focusing more on data science, less on engineering. Use Metaflow with your favorite data science libraries, such as Tensorflow or SciKit Learn, and write your models in idiomatic Python code with not much new to learn. Metaflow also supports the R language. Metaflow helps you design your workflow, run it at scale, and deploy it to production. It versions and tracks all your experiments and data automatically. It allows you to inspect results easily in notebooks. Metaflow comes packaged with the tutorials, so getting started is easy. You can make copies of all the tutorials in your current directory using the metaflow command line interface.
  • 44
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 45
    Darwin

    Darwin

    SparkCognition

    Darwin is an automated machine learning product that enables your data science and business analytics teams to move more quickly from data to meaningful results. Darwin helps organizations scale the adoption of data science across teams, and the implementation of machine learning applications across operations, becoming data-driven enterprises.
  • 46
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 47
    Replicate

    Replicate

    Replicate

    Replicate is a platform that enables developers and businesses to run, fine-tune, and deploy machine learning models at scale with minimal effort. It offers an easy-to-use API that allows users to generate images, videos, speech, music, and text using thousands of community-contributed models. Users can fine-tune existing models with their own data to create custom versions tailored to specific tasks. Replicate supports deploying custom models using its open-source tool Cog, which handles packaging, API generation, and scalable cloud deployment. The platform automatically scales compute resources based on demand, charging users only for the compute time they consume. With robust logging, monitoring, and a large model library, Replicate aims to simplify the complexities of production ML infrastructure.
  • 48
    Metal

    Metal

    Metal

    Metal is your production-ready, fully-managed, ML retrieval platform. Use Metal to find meaning in your unstructured data with embeddings. Metal is a managed service that allows you to build AI products without the hassle of managing infrastructure. Integrations with OpenAI, CLIP, and more. Easily process & chunk your documents. Take advantage of our system in production. Easily plug into the MetalRetriever. Simple /search endpoint for running ANN queries. Get started with a free account. Metal API Keys to use our API & SDKs. With your API Key, you can use authenticate by populating the headers. Learn how to use our Typescript SDK to implement Metal into your application. Although we love TypeScript, you can of course utilize this library in JavaScript. Mechanism to fine-tune your spp programmatically. Indexed vector database of your embeddings. Resources that represent your specific ML use-case.
    Starting Price: $25 per month
  • 49
    RunLve

    RunLve

    RunLve

    Runlve sits at the center of the AI revolution. We provide data science tools, MLOps, and data & model management to empower our customers and community with AI capabilities to propel their projects forward.
  • 50
    Dynamiq

    Dynamiq

    Dynamiq

    Dynamiq is a platform built for engineers and data scientists to build, deploy, test, monitor and fine-tune Large Language Models for any use case the enterprise wants to tackle. Key features: 🛠️ Workflows: Build GenAI workflows in a low-code interface to automate tasks at scale 🧠 Knowledge & RAG: Create custom RAG knowledge bases and deploy vector DBs in minutes 🤖 Agents Ops: Create custom LLM agents to solve complex task and connect them to your internal APIs 📈 Observability: Log all interactions, use large-scale LLM quality evaluations 🦺 Guardrails: Precise and reliable LLM outputs with pre-built validators, detection of sensitive content, and data leak prevention 📻 Fine-tuning: Fine-tune proprietary LLM models to make them your own
    Starting Price: $125/month