Alternatives to Apache Flink

Compare Apache Flink alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Apache Flink in 2025. Compare features, ratings, user reviews, pricing, and more from Apache Flink competitors and alternatives in order to make an informed decision for your business.

  • 1
    StarTree

    StarTree

    StarTree

    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. • Gain critical real-time insights to run your business • Seamlessly integrate data streaming and batch data • High performance in throughput and low-latency at petabyte scale • Fully-managed cloud service • Tiered storage to optimize cloud performance & spend • Fully-secure & enterprise-ready
    Compare vs. Apache Flink View Software
    Visit Website
  • 2
    Striim

    Striim

    Striim

    Data integration for your hybrid cloud. Modern, reliable data integration across your private and public cloud. All in real-time with change data capture and data streams. Built by the executive & technical team from GoldenGate Software, Striim brings decades of experience in mission-critical enterprise workloads. Striim scales out as a distributed platform in your environment or in the cloud. Scalability is fully configurable by your team. Striim is fully secure with HIPAA and GDPR compliance. Built ground up for modern enterprise workloads in the cloud or on-premise. Drag and drop to create data flows between your sources and targets. Process, enrich, and analyze your streaming data with real-time SQL queries.
  • 3
    RisingWave

    RisingWave

    RisingWave

    RisingWave is an open-source distributed SQL database for stream processing. It is designed to reduce the complexity and cost of building real-time applications. RisingWave offers users a PostgreSQL-like experience specifically tailored for distributed stream processing. RisingWave Cloud is a fully managed cloud service that encompasses the entire functionality of RisingWave. By leveraging RisingWave Cloud, users can effortlessly engage in cloud-based stream processing, free from the challenges associated with deploying and maintaining their own infrastructure.
    Starting Price: $200/month
  • 4
    ksqlDB

    ksqlDB

    Confluent

    Now that your data is in motion, it’s time to make sense of it. Stream processing enables you to derive instant insights from your data streams, but setting up the infrastructure to support it can be complex. That’s why Confluent developed ksqlDB, the database purpose-built for stream processing applications. Make your data immediately actionable by continuously processing streams of data generated throughout your business. ksqlDB’s intuitive syntax lets you quickly access and augment data in Kafka, enabling development teams to seamlessly create real-time innovative customer experiences and fulfill data-driven operational needs. ksqlDB offers a single solution for collecting streams of data, enriching them, and serving queries on new derived streams and tables. That means less infrastructure to deploy, maintain, scale, and secure. With less moving parts in your data architecture, you can focus on what really matters -- innovation.
  • 5
    Timeplus

    Timeplus

    Timeplus

    Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.
    Starting Price: $199 per month
  • 6
    Materialize

    Materialize

    Materialize

    Materialize is a reactive database that delivers incremental view updates. We help developers easily build with streaming data using standard SQL. Materialize can connect to many different external sources of data without pre-processing. Connect directly to streaming sources like Kafka, Postgres databases, CDC, or historical sources of data like files or S3. Materialize allows you to query, join, and transform data sources in standard SQL - and presents the results as incrementally-updated Materialized views. Queries are maintained and continually updated as new data streams in. With incrementally-updated views, developers can easily build data visualizations or real-time applications. Building with streaming data can be as simple as writing a few lines of SQL.
    Starting Price: $0.98 per hour
  • 7
    Apache Beam

    Apache Beam

    Apache Software Foundation

    The easiest way to do batch and streaming data processing. Write once, run anywhere data processing for mission-critical production workloads. Beam reads your data from a diverse set of supported sources, no matter if it’s on-prem or in the cloud. Beam executes your business logic for both batch and streaming use cases. Beam writes the results of your data processing logic to the most popular data sinks in the industry. A simplified, single programming model for both batch and streaming use cases for every member of your data and application teams. Apache Beam is extensible, with projects such as TensorFlow Extended and Apache Hop built on top of Apache Beam. Execute pipelines on multiple execution environments (runners), providing flexibility and avoiding lock-in. Open, community-based development and support to help evolve your application and meet the needs of your specific use cases.
  • 8
    Apache Gobblin

    Apache Gobblin

    Apache Software Foundation

    A distributed data integration framework that simplifies common aspects of Big Data integration such as data ingestion, replication, organization, and lifecycle management for both streaming and batch data ecosystems. Runs as a standalone application on a single box. Also supports embedded mode. Runs as an mapreduce application on multiple Hadoop versions. Also supports Azkaban for launching mapreduce jobs. Runs as a standalone cluster with primary and worker nodes. This mode supports high availability and can run on bare metals as well. Runs as an elastic cluster on public cloud. This mode supports high availability. Gobblin as it exists today is a framework that can be used to build different data integration applications like ingest, replication, etc. Each of these applications is typically configured as a separate job and executed through a scheduler like Azkaban.
  • 9
    Apache Heron

    Apache Heron

    Apache Software Foundation

    Heron is built with a wide array of architectural improvements that contribute to high-efficiency gains. Heron is API compatible with Apache Storm and hence no code change is required for migration. Easily debug and identify the issues in topologies, allowing faster iteration during development. Heron UI gives a visual overview of each topology to visualize hot spot locations and detailed counters for tracking progress and troubleshooting. Heron is highly scalable both in the ability to execute large number of components for each topology and the ability to launch and track large numbers of topologies.
  • 10
    Apache Kafka

    Apache Kafka

    The Apache Software Foundation

    Apache Kafka® is an open-source, distributed streaming platform. Scale production clusters up to a thousand brokers, trillions of messages per day, petabytes of data, hundreds of thousands of partitions. Elastically expand and contract storage and processing. Stretch clusters efficiently over availability zones or connect separate clusters across geographic regions. Process streams of events with joins, aggregations, filters, transformations, and more, using event-time and exactly-once processing. Kafka’s out-of-the-box Connect interface integrates with hundreds of event sources and event sinks including Postgres, JMS, Elasticsearch, AWS S3, and more. Read, write, and process streams of events in a vast array of programming languages.
  • 11
    Apache Pinot

    Apache Pinot

    Apache Corporation

    Pinot is designed to answer OLAP queries with low latency on immutable data. Pluggable indexing technologies - Sorted Index, Bitmap Index, Inverted Index. Joins are currently not supported, but this problem can be overcome by using Trino or PrestoDB for querying. SQL like language that supports selection, aggregation, filtering, group by, order by, distinct queries on data. Consist of of both offline and real-time table. Use real-time table only to cover segments for which offline data may not be available yet. Detect the right anomalies by customizing anomaly detect flow and notification flow.
  • 12
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 13
    Apache Storm

    Apache Storm

    Apache Software Foundation

    Apache Storm is a free and open source distributed realtime computation system. Apache Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Apache Storm is simple, can be used with any programming language, and is a lot of fun to use! Apache Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Apache Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate. Apache Storm integrates with the queueing and database technologies you already use. An Apache Storm topology consumes streams of data and processes those streams in arbitrarily complex ways, repartitioning the streams between each stage of the computation however needed. Read more in the tutorial.
  • 14
    Arroyo

    Arroyo

    Arroyo

    Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes.
  • 15
    DeltaStream

    DeltaStream

    DeltaStream

    DeltaStream is a unified serverless stream processing platform that integrates with streaming storage services. Think about it as the compute layer on top of your streaming storage. It provides functionalities of streaming analytics(Stream processing) and streaming databases along with additional features to provide a complete platform to manage, process, secure and share streaming data. DeltaStream provides a SQL based interface where you can easily create stream processing applications such as streaming pipelines, materialized views, microservices and many more. It has a pluggable processing engine and currently uses Apache Flink as its primary stream processing engine. DeltaStream is more than just a query processing layer on top of Kafka or Kinesis. It brings relational database concepts to the data streaming world, including namespacing and role based access control enabling you to securely access, process and share your streaming data regardless of where they are stored.
  • 16
    SQLstream

    SQLstream

    Guavus, a Thales company

    SQLstream ranks #1 for IoT stream processing & analytics (ABI Research). Used by Verizon, Walmart, Cisco, & Amazon, our technology powers applications across data centers, the cloud, & the edge. Thanks to sub-ms latency, SQLstream enables live dashboards, time-critical alerts, & real-time action. Smart cities can optimize traffic light timing or reroute ambulances & fire trucks. Security systems can shut down hackers & fraudsters right away. AI / ML models, trained by streaming sensor data, can predict equipment failures. With lightning performance, up to 13M rows / sec / CPU core, companies have drastically reduced their footprint & cost. Our efficient, in-memory processing permits operations at the edge that are otherwise impossible. Acquire, prepare, analyze, & act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code GUI dev environment. Export SQL scripts & deploy with the flexibility of Kubernetes.
  • 17
    Hitachi Streaming Data Platform
    ​The Hitachi Streaming Data Platform (SDP) is a real-time data processing system designed to analyze large volumes of time-sequenced data as it is generated. By leveraging in-memory and incremental computational processing, SDP enables swift analysis without the delays associated with traditional stored data processing. Users can define summary analysis scenarios using Continuous Query Language (CQL), similar to SQL, allowing for flexible and programmable data analysis without the need for custom applications. The platform's architecture comprises components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, facilitating scalable and efficient data processing workflows. SDP's modular design supports various data input and output formats, including text files and HTTP packets, and integrates with visualization tools like RTView for real-time monitoring.
  • 18
    Amazon Managed Service for Apache Flink
    Thousands of customers use Amazon Managed Service for Apache Flink to run stream processing applications. With Amazon Managed Service for Apache Flink, you can transform and analyze streaming data in real-time using Apache Flink and integrate applications with other AWS services. There are no servers and clusters to manage, and there is no computing and storage infrastructure to set up. You pay only for the resources you use. Build and run Apache Flink applications, without setting up infrastructure and managing resources and clusters. Process gigabytes of data per second with subsecond latencies and respond to events in real-time. Deploy highly available and durable applications with Multi-AZ deployments and APIs for application lifecycle management. Develop applications that transform and deliver data to Amazon Simple Storage Service (Amazon S3), Amazon OpenSearch Service, and more.
    Starting Price: $0.11 per hour
  • 19
    WarpStream

    WarpStream

    WarpStream

    WarpStream is an Apache Kafka-compatible data streaming platform built directly on top of object storage, with no inter-AZ networking costs, no disks to manage, and infinitely scalable, all within your VPC. WarpStream is deployed as a stateless and auto-scaling agent binary in your VPC with no local disks to manage. Agents stream data directly to and from object storage with no buffering on local disks and no data tiering. Create new “virtual clusters” in our control plane instantly. Support different environments, teams, or projects without managing any dedicated infrastructure. WarpStream is protocol compatible with Apache Kafka, so you can keep using all your favorite tools and software. No need to rewrite your application or use a proprietary SDK. Just change the URL in your favorite Kafka client library and start streaming. Never again have to choose between reliability and your budget.
    Starting Price: $2,987 per month
  • 20
    Oracle Cloud Infrastructure Streaming
    Streaming service is a real-time, serverless, Apache Kafka-compatible event streaming platform for developers and data scientists. Streaming is tightly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. The service also provides out-of-the-box integrations for hundreds of third-party products across categories such as DevOps, databases, big data, and SaaS applications. Data engineers can easily set up and operate big data pipelines. Oracle handles all infrastructure and platform management for event streaming, including provisioning, scaling, and security patching. With the help of consumer groups, Streaming can provide state management for thousands of consumers. This helps developers easily build applications at scale.
  • 21
    Google Cloud Dataflow
    Unified stream and batch data processing that's serverless, fast, and cost-effective. Fully managed data processing service. Automated provisioning and management of processing resources. Horizontal autoscaling of worker resources to maximize resource utilization. OSS community-driven innovation with Apache Beam SDK. Reliable and consistent exactly-once processing. Streaming data analytics with speed. Dataflow enables fast, simplified streaming data pipeline development with lower data latency. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Dataflow automates provisioning and management of processing resources to minimize latency and maximize utilization.
  • 22
    Cloudera DataFlow
    Cloudera DataFlow for the Public Cloud (CDF-PC) is a cloud-native universal data distribution service powered by Apache NiFi ​​that lets developers connect to any data source anywhere with any structure, process it, and deliver to any destination. CDF-PC offers a flow-based low-code development paradigm that aligns best with how developers design, develop, and test data distribution pipelines. With over 400+ connectors and processors across the ecosystem of hybrid cloud services—including data lakes, lakehouses, cloud warehouses, and on-premises sources—CDF-PC provides indiscriminate data distribution. These data distribution flows can then be version-controlled into a catalog where operators can self-serve deployments to different runtimes.
  • 23
    Amazon Kinesis
    Easily collect, process, and analyze video and data streams in real time. Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you can get timely insights and react quickly to new information. Amazon Kinesis offers key capabilities to cost-effectively process streaming data at any scale, along with the flexibility to choose the tools that best suit the requirements of your application. With Amazon Kinesis, you can ingest real-time data such as video, audio, application logs, website clickstreams, and IoT telemetry data for machine learning, analytics, and other applications. Amazon Kinesis enables you to process and analyze data as it arrives and respond instantly instead of having to wait until all your data is collected before the processing can begin. Amazon Kinesis enables you to ingest, buffer, and process streaming data in real-time, so you can derive insights in seconds or minutes instead of hours or days.
  • 24
    Redpanda

    Redpanda

    Redpanda Data

    Breakthrough data streaming capabilities that let you deliver customer experiences never before possible. Kafka API and ecosystem are compatible. Redpanda BulletPredictable low latencies with zero data loss. Redpanda BulletUpto 10x faster than Kafka. Redpanda BulletEnterprise-grade support and hotfixes. Redpanda BulletAutomated backups to S3/GCS. Redpanda Bullet100% freedom from routine Kafka operations. Redpanda BulletSupport for AWS and GCP. Redpanda was designed from the ground up to be easily installed to get streaming up and running quickly. After you see its power, put Redpanda to the test in production. Use the more advanced Redpanda features. We manage provisioning, monitoring, and upgrades. Without any access to your cloud credentials. Sensitive data never leaves your environment. Provisioned, operated, and maintained for you. Configurable instance types. Expand cluster as your needs grow.
  • 25
    IBM Streams
    IBM Streams evaluates a broad range of streaming data — unstructured text, video, audio, geospatial and sensor — helping organizations spot opportunities and risks and make decisions in real-time. Make sense of your data, turning fast-moving volumes and varieties into insight with IBM® Streams. Streams evaluate a broad range of streaming data — unstructured text, video, audio, geospatial and sensor — helping organizations spot opportunities and risks as they happen. Combine Streams with other IBM Cloud Pak® for Data capabilities, built on an open, extensible architecture. Help enable data scientists to collaboratively build models to apply to stream flows, plus, analyze massive amounts of data in real-time. Acting upon your data and deriving true value is easier than ever.
  • 26
    Informatica Data Engineering Streaming
    AI-powered Informatica Data Engineering Streaming enables data engineers to ingest, process, and analyze real-time streaming data for actionable insights. Advanced serverless deployment option​ with integrated metering dashboard cuts admin overhead. Rapidly build intelligent data pipelines with CLAIRE®-powered automation, including automatic change data capture (CDC). Ingest thousands of databases and millions of files, and streaming events. Efficiently ingest databases, files, and streaming data for real-time data replication and streaming analytics. Find and inventory all data assets throughout your organization. Intelligently discover and prepare trusted data for advanced analytics and AI/ML projects.
  • 27
    Confluent

    Confluent

    Confluent

    Infinite retention for Apache Kafka® with Confluent. Be infrastructure-enabled, not infrastructure-restricted Legacy technologies require you to choose between being real-time or highly-scalable. Event streaming enables you to innovate and win - by being both real-time and highly-scalable. Ever wonder how your rideshare app analyzes massive amounts of data from multiple sources to calculate real-time ETA? Ever wonder how your credit card company analyzes millions of credit card transactions across the globe and sends fraud notifications in real-time? The answer is event streaming. Move to microservices. Enable your hybrid strategy through a persistent bridge to cloud. Break down silos to demonstrate compliance. Gain real-time, persistent event transport. The list is endless.
  • 28
    Rockset

    Rockset

    Rockset

    Real-Time Analytics on Raw Data. Live ingest from S3, Kafka, DynamoDB & more. Explore raw data as SQL tables. Build amazing data-driven applications & live dashboards in minutes. Rockset is a serverless search and analytics engine that powers real-time apps and live dashboards. Operate directly on raw data, including JSON, XML, CSV, Parquet, XLSX or PDF. Plug data from real-time streams, data lakes, databases, and data warehouses into Rockset. Ingest real-time data without building pipelines. Rockset continuously syncs new data as it lands in your data sources without the need for a fixed schema. Use familiar SQL, including joins, filters, and aggregations. It’s blazing fast, as Rockset automatically indexes all fields in your data. Serve fast queries that power the apps, microservices, live dashboards, and data science notebooks you build. Scale without worrying about servers, shards, or pagers.
  • 29
    Spark Streaming

    Spark Streaming

    Apache Software Foundation

    Spark Streaming brings Apache Spark's language-integrated API to stream processing, letting you write streaming jobs the same way you write batch jobs. It supports Java, Scala and Python. Spark Streaming recovers both lost work and operator state (e.g. sliding windows) out of the box, without any extra code on your part. By running on Spark, Spark Streaming lets you reuse the same code for batch processing, join streams against historical data, or run ad-hoc queries on stream state. Build powerful interactive applications, not just analytics. Spark Streaming is developed as part of Apache Spark. It thus gets tested and updated with each Spark release. You can run Spark Streaming on Spark's standalone cluster mode or other supported cluster resource managers. It also includes a local run mode for development. In production, Spark Streaming uses ZooKeeper and HDFS for high availability.
  • 30
    Embiot

    Embiot

    Telchemy

    Embiot® is a compact, high performance IoT analytics software agent for IoT gateway and smart sensor applications. This edge computing application is small enough to integrate directly into devices, smart sensors and gateways, but powerful enough to calculate complex analytics from large amounts of raw data at high speed. Internally, Embiot uses a stream processing model to enable it to handle sensor data that arrives at different rates and out of order. It has a simple intuitive configuration language and a rich set of math, stats and AI functions making it fast and easy to solve your analytics problems. Embiot supports a range of input methods including MODBUS, MQTT, REST/XML, REST/JSON, Name/Value and CSV. Embiot is able to send output reports to multiple destinations concurrently in REST, MQTT and custom text formats. For security, Embiot supports TLS selectively on any input or output stream, HTTP and MQTT authentication.
  • 31
    Amazon MSK
    Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that makes it easy for you to build and run applications that use Apache Kafka to process streaming data. Apache Kafka is an open-source platform for building real-time streaming data pipelines and applications. With Amazon MSK, you can use native Apache Kafka APIs to populate data lakes, stream changes to and from databases, and power machine learning and analytics applications. Apache Kafka clusters are challenging to setup, scale, and manage in production. When you run Apache Kafka on your own, you need to provision servers, configure Apache Kafka manually, replace servers when they fail, orchestrate server patches and upgrades, architect the cluster for high availability, ensure data is durably stored and secured, setup monitoring and alarms, and carefully plan scaling events to support load changes.
    Starting Price: $0.0543 per hour
  • 32
    VeloDB

    VeloDB

    VeloDB

    Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools.
  • 33
    Azure Stream Analytics
    Discover Azure Stream Analytics, the easy-to-use, real-time analytics service that is designed for mission-critical workloads. Build an end-to-end serverless streaming pipeline with just a few clicks. Go from zero to production in minutes using SQL—easily extensible with custom code and built-in machine learning capabilities for more advanced scenarios. Run your most demanding workloads with the confidence of a financially backed SLA.
  • 34
    Amazon Data Firehose
    Easily capture, transform, and load streaming data. Create a delivery stream, select your destination, and start streaming real-time data with just a few clicks. Automatically provision and scale compute, memory, and network resources without ongoing administration. Transform raw streaming data into formats like Apache Parquet, and dynamically partition streaming data without building your own processing pipelines. Amazon Data Firehose provides the easiest way to acquire, transform, and deliver data streams within seconds to data lakes, data warehouses, and analytics services. To use Amazon Data Firehose, you set up a stream with a source, destination, and required transformations. Amazon Data Firehose continuously processes the stream, automatically scales based on the amount of data available, and delivers it within seconds. Select the source for your data stream or write data using the Firehose Direct PUT API.
    Starting Price: $0.075 per month
  • 35
    Oracle Stream Analytics
    Oracle Stream Analytics allows users to process and analyze large scale real-time information by using sophisticated correlation patterns, enrichment, and machine learning. It offers real-time actionable business insight on streaming data and automates action to drive today’s agile businesses. Visual GEOProcessing with GEOFence relationship spatial analytics. New Expressive Patterns Library, including Spatial, Statistical, General industry and Anomaly detection, streaming machine learning. Abstracted visual façade to interrogate live real time streaming data and perform intuitive in-memory real time business analytics.
  • 36
    TIBCO Streaming
    TIBCO Streaming is a real-time analytics platform designed to process and analyze high-velocity data streams, enabling organizations to make immediate, data-driven decisions. It offers a low-code development environment through StreamBase Studio, allowing users to build complex event processing applications with minimal coding. It supports over 150 connectors, including APIs, Apache Kafka, MQTT, RabbitMQ, and databases like MySQL and JDBC, facilitating seamless integration with various data sources. TIBCO Streaming incorporates dynamic learning operators, enabling adaptive machine learning models that provide contextual insights and automate decision-making processes. It also features real-time business intelligence capabilities, allowing users to visualize live data alongside historical information for comprehensive analysis. It is cloud-ready, supporting deployments on AWS, Azure, GCP, and on-premises environments.
  • 37
    Azure Event Hubs
    Event Hubs is a fully managed, real-time data ingestion service that’s simple, trusted, and scalable. Stream millions of events per second from any source to build dynamic data pipelines and immediately respond to business challenges. Keep processing data during emergencies using the geo-disaster recovery and geo-replication features. Integrate seamlessly with other Azure services to unlock valuable insights. Allow existing Apache Kafka clients and applications to talk to Event Hubs without any code changes—you get a managed Kafka experience without having to manage your own clusters. Experience real-time data ingestion and microbatching on the same stream. Focus on drawing insights from your data instead of managing infrastructure. Build real-time big data pipelines and respond to business challenges right away.
    Starting Price: $0.03 per hour
  • 38
    IBM Event Streams
    IBM Event Streams is a fully managed event streaming platform built on Apache Kafka, designed to help enterprises process and respond to real-time data streams. With capabilities for machine learning integration, high availability, and secure cloud deployment, it enables organizations to create intelligent applications that react to events as they happen. The platform supports multi-cloud environments, disaster recovery, and geo-replication, making it ideal for mission-critical workloads. IBM Event Streams simplifies building and scaling real-time, event-driven solutions, ensuring data is processed quickly and efficiently.
  • 39
    Evam Continuous Intelligence Platform
    Evam's Continuous Intelligence Platform combines multiple products for processing and visualizing real-time data. It runs real-time machine learning models on streaming data, while enriching the real-time data with a smart in-memory caching mechanism. EVAM empowers telecommunications, financial services, retail, transportation and travel companies to maximize their business value. Through continuous intelligence platform with machine learning capabilities. EVAM processes real-time data and designs and orchestrates customer journeys visually with advanced analytical models, machine learning, and artificial intelligence algorithms. EVAM enables enterprises to engage their customers using their data across all channels, including legacy ones, in real-time. Collect billions of events and process them in real-time. Understand each customer's needs and attract, engage, and retain them more effectively.
  • 40
    Samza

    Samza

    Apache Software Foundation

    Samza allows you to build stateful applications that process data in real-time from multiple sources including Apache Kafka. Battle-tested at scale, it supports flexible deployment options to run on YARN or as a standalone library. Samza provides extremely low latencies and high throughput to analyze your data instantly. Scales to several terabytes of state with features like incremental checkpoints and host-affinity. Samza is easy to operate with flexible deployment options - YARN, Kubernetes or standalone. Ability to run the same code to process both batch and streaming data. Integrates with several sources including Kafka, HDFS, AWS Kinesis, Azure Eventhubs, K-V stores and ElasticSearch.
  • 41
    KX Streaming Analytics
    KX Streaming Analytics provides the ability to ingest, store, process, and analyze historic and time series data to make analytics, insights, and visualizations instantly available. To help ensure your applications and users are productive quickly, the platform provides the full lifecycle of data services, including query processing, tiering, migration, archiving, data protection, and scaling. Our advanced analytics and visualization tools, used widely across finance and industry, enable you to define and perform queries, calculations, aggregations, machine learning and AI on any streaming and historical data. Deployable across multiple hardware environments, data can come from real-time business events and high-volume sources including sensors, clickstreams, radio-frequency identification, GPS systems, social networking sites, and mobile devices.
  • 42
    Apache Doris

    Apache Doris

    The Apache Software Foundation

    Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.
  • 43
    Kapacitor

    Kapacitor

    InfluxData

    Kapacitor is a native data processing engine for InfluxDB 1.x and is an integrated component in the InfluxDB 2.0 platform. Kapacitor can process both stream and batch data from InfluxDB, acting on this data in real-time via its programming language TICKscript. Today’s modern applications require more than just dashboarding and operator alerts—they need the ability to trigger actions. Kapacitor’s alerting system follows a publish-subscribe design pattern. Alerts are published to topics and handlers subscribe to a topic. This pub/sub model and the ability for these to call User Defined Functions make Kapacitor very flexible to act as the control plane in your environment, performing tasks like auto-scaling, stock reordering, and IoT device control. Kapacitor provides a simple plugin architecture, or interface, that allows it to integrate with any anomaly detection engine.
    Starting Price: $0.002 per GB per hour
  • 44
    Apache NiFi

    Apache NiFi

    Apache Software Foundation

    An easy to use, powerful, and reliable system to process and distribute data. Apache NiFi supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic. Some of the high-level capabilities and objectives of Apache NiFi include web-based user interface, offering a seamless experience between design, control, feedback, and monitoring. Highly configurable, loss tolerant, low latency, high throughput, and dynamic prioritization. Flow can be modified at runtime, back pressure, data provenance, track dataflow from beginning to end, designed for extension. Build your own processors and more. Enables rapid development and effective testing. Secure, SSL, SSH, HTTPS, encrypted content, and much more. Multi-tenant authorization and internal authorization/policy management. NiFi is comprised of a number of web applications (web UI, web API, documentation, custom UI's, etc). So, you'll need to set up your mapping to the root path.
  • 45
    GigaSpaces

    GigaSpaces

    GigaSpaces

    Smart DIH is an operational data hub that powers real-time modern applications. It unleashes the power of customers’ data by transforming data silos into assets, turning organizations into data-driven enterprises. Smart DIH consolidates data from multiple heterogeneous systems into a highly performant data layer. Low code tools empower data professionals to deliver data microservices in hours, shortening developing cycles and ensuring data consistency across all digital channels. XAP Skyline is a cloud-native, in memory data grid (IMDG) and developer framework designed for mission critical, cloud-native apps. XAP Skyline delivers maximal throughput, microsecond latency and scale, while maintaining transactional consistency. It provides extreme performance, significantly reducing data access time, which is crucial for real-time decisioning, and transactional applications. XAP Skyline is used in financial services, retail, and other industries where speed and scalability are critical.
  • 46
    Astra Streaming
    Responsive applications keep users engaged and developers inspired. Rise to meet these ever-increasing expectations with the DataStax Astra Streaming service platform. DataStax Astra Streaming is a cloud-native messaging and event streaming platform powered by Apache Pulsar. Astra Streaming allows you to build streaming applications on top of an elastically scalable, multi-cloud messaging and event streaming platform. Astra Streaming is powered by Apache Pulsar, the next-generation event streaming platform which provides a unified solution for streaming, queuing, pub/sub, and stream processing. Astra Streaming is a natural complement to Astra DB. Using Astra Streaming, existing Astra DB users can easily build real-time data pipelines into and out of their Astra DB instances. With Astra Streaming, avoid vendor lock-in and deploy on any of the major public clouds (AWS, GCP, Azure) compatible with open-source Apache Pulsar.
  • 47
    Apama

    Apama

    Apama

    Apama Streaming Analytics allows organizations to analyze and act on IoT and fast-moving data in real-time, responding to events intelligently the moment they happen. Apama Community Edition is a freemium version of Apama by Software AG that can be used to learn about, develop and put streaming analytics applications into production. The Software AG Data & Analytics Platform is an end-toend, modular and integrated set of world-class capabilities optimized for high-speed data management and analytics on real-time data and offering out-of-the-box integration and connectivity to all key enterprise data sources. Choose the capabilities you need: streaming, predictive and visual analytics along with messaging for easy integration with other enterprise apps and an in-memory data store for extremely fast access. Integrate historical and other data for comparison—ideal when building models or enriching customer and other vital data.
  • 48
    Digital Twin Streaming Service
    ScaleOut Digital Twin Streaming Service™ Easily build and deploy real-time digital twins for streaming analytics Connect to many data sources with Azure & AWS IoT hubs, Kafka, and more Maximize situational awareness with live, aggregate analytics. Introducing a breakthrough cloud service that simultaneously tracks telemetry from millions of data sources with “real-time” digital twins — enabling immediate, deep introspection with state-tracking and highly targeted, real-time feedback for thousands of devices. A powerful UI simplifies deployment and displays aggregate analytics in real time to maximize situational awareness. Ideal for a wide range of applications, including the Internet of Things (IoT), real-time intelligent monitoring, logistics, and financial services. Simplified pricing makes getting started fast and easy. Combined with the ScaleOut Digital Twin Builder software toolkit, the ScaleOut Digital Twin Streaming Service enables the next generation in stream processing.
  • 49
    Xeotek

    Xeotek

    Xeotek

    Xeotek helps companies develop and explore their data applications and streams faster with Xeotek's powerful desktop and web application. Xeotek KaDeck was designed to be used by developers, operations, and business users alike. Because business users, developers, and operations jointly gain insight into data and processes via KaDeck, the whole team benefits: fewer misunderstandings, less rework, more transparency. Xeotek KaDeck puts you in control of your data streams. Save hours of work by gaining insights at the data and application level in projects or day-to-day operations. Export, filter, transform and manage data streams in KaDeck with ease. Run JavaScript (NodeV4) code, transform & generate test data, view & change consumer offsets, manage your streams or topics, Kafka Connect instances, schema registry, and ACLs – all from one convenient user interface.
  • 50
    Kinetica

    Kinetica

    Kinetica

    A scalable cloud database for real-time analysis on large and streaming datasets. Kinetica is designed to harness modern vectorized processors to be orders of magnitude faster and more efficient for real-time spatial and temporal workloads. Track and gain intelligence from billions of moving objects in real-time. Vectorization unlocks new levels of performance for analytics on spatial and time series data at scale. Ingest and query at the same time to act on real-time events. Kinetica's lockless architecture and distributed ingestion ensures data is available to query as soon as it lands. Vectorized processing enables you to do more with less. More power allows for simpler data structures, which lead to lower storage costs, more flexibility and less time engineering your data. Vectorized processing opens the door to amazingly fast analytics and detailed visualization of moving objects at scale.