Alternatives to Amazon SageMaker JumpStart

Compare Amazon SageMaker JumpStart alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Amazon SageMaker JumpStart in 2025. Compare features, ratings, user reviews, pricing, and more from Amazon SageMaker JumpStart competitors and alternatives in order to make an informed decision for your business.

  • 1
    Amazon SageMaker
    Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
  • 2
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
  • 3
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 4
    GPUonCLOUD

    GPUonCLOUD

    GPUonCLOUD

    Traditionally, deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling take days or weeks time. However, with GPUonCLOUD’s dedicated GPU servers, it's a matter of hours. You may want to opt for pre-configured systems or pre-built instances with GPUs featuring deep learning frameworks like TensorFlow, PyTorch, MXNet, TensorRT, libraries e.g. real-time computer vision library OpenCV, thereby accelerating your AI/ML model-building experience. Among the wide variety of GPUs available to us, some of the GPU servers are best fit for graphics workstations and multi-player accelerated gaming. Instant jumpstart frameworks increase the speed and agility of the AI/ML environment with effective and efficient environment lifecycle management.
  • 5
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 6
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 7
    Amazon SageMaker Autopilot
    Amazon SageMaker Autopilot eliminates the heavy lifting of building ML models. You simply provide a tabular dataset and select the target column to predict, and SageMaker Autopilot will automatically explore different solutions to find the best model. You then can directly deploy the model to production with just one click or iterate on the recommended solutions to further improve the model quality. You can use Amazon SageMaker Autopilot even when you have missing data. SageMaker Autopilot automatically fills in the missing data, provides statistical insights about columns in your dataset, and automatically extracts information from non-numeric columns, such as date and time information from timestamps.
  • 8
    Amazon SageMaker Edge
    The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console.
  • 9
    Amazon SageMaker Clarify
    Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model.
  • 10
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 11
    Amazon SageMaker Ground Truth
    Amazon SageMaker allows you to identify raw data such as images, text files, and videos; add informative labels and generate labeled synthetic data to create high-quality training data sets for your machine learning (ML) models. SageMaker offers two options, Amazon SageMaker Ground Truth Plus and Amazon SageMaker Ground Truth, which give you the flexibility to use an expert workforce to create and manage data labeling workflows on your behalf or manage your own data labeling workflows. data labeling. If you want the flexibility to create and manage your own personal and data labeling workflows, you can use SageMaker Ground Truth. SageMaker Ground Truth is a data labeling service that makes data labeling easy and gives you the option of using human annotators via Amazon Mechanical Turk, third-party providers, or your own private staff.
  • 12
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
  • 13
    Amazon SageMaker Debugger
    Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values.
  • 14
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
  • 15
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 16
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 17
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
  • 18
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 19
    Amazon SageMaker Pipelines
    Using Amazon SageMaker Pipelines, you can create ML workflows with an easy-to-use Python SDK, and then visualize and manage your workflow using Amazon SageMaker Studio. You can be more efficient and scale faster by storing and reusing the workflow steps you create in SageMaker Pipelines. You can also get started quickly with built-in templates to build, test, register, and deploy models so you can get started with CI/CD in your ML environment quickly. Many customers have hundreds of workflows, each with a different version of the same model. With the SageMaker Pipelines model registry, you can track these versions in a central repository where it is easy to choose the right model for deployment based on your business requirements. You can use SageMaker Studio to browse and discover models, or you can access them through the SageMaker Python SDK.
  • 20
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 21
    Amazon SageMaker Model Deployment
    Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
  • 22
    Skyportal

    Skyportal

    Skyportal

    Skyportal is a GPU cloud platform built for AI engineers, offering 50% less cloud costs and 100% GPU performance. It provides a cost-effective GPU infrastructure for machine learning workloads, eliminating unpredictable cloud bills and hidden fees. Skyportal has seamlessly integrated Kubernetes, Slurm, PyTorch, TensorFlow, CUDA, cuDNN, and NVIDIA Drivers, fully optimized for Ubuntu 22.04 LTS and 24.04 LTS, allowing users to focus on innovating and scaling with ease. It offers high-performance NVIDIA H100 and H200 GPUs optimized specifically for ML/AI workloads, with instant scalability and 24/7 expert support from a team that understands ML workflows and optimization. Skyportal's transparent pricing and zero egress fees provide predictable costs for AI infrastructure. Users can share their AI/ML project requirements and goals, deploy models within the infrastructure using familiar tools and frameworks, and scale their infrastructure as needed.
  • 23
    AWS Deep Learning Containers
    Deep Learning Containers are Docker images that are preinstalled and tested with the latest versions of popular deep learning frameworks. Deep Learning Containers lets you deploy custom ML environments quickly without building and optimizing your environments from scratch. Deploy deep learning environments in minutes using prepackaged and fully tested Docker images. Build custom ML workflows for training, validation, and deployment through integration with Amazon SageMaker, Amazon EKS, and Amazon ECS.
  • 24
    NVIDIA Triton Inference Server
    NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.
  • 25
    FPT Cloud

    FPT Cloud

    FPT Cloud

    FPT Cloud is a next‑generation cloud computing and AI platform that streamlines innovation by offering a robust, modular ecosystem of over 80 services, from compute, storage, database, networking, and security to AI development, backup, disaster recovery, and data analytics, built to international standards. Its offerings include scalable virtual servers with auto‑scaling and 99.99% uptime; GPU‑accelerated infrastructure tailored for AI/ML workloads; FPT AI Factory, a comprehensive AI lifecycle suite powered by NVIDIA supercomputing (including infrastructure, model pre‑training, fine‑tuning, model serving, AI notebooks, and data hubs); high‑performance object and block storage with S3 compatibility and encryption; Kubernetes Engine for managed container orchestration with cross‑cloud portability; managed database services across SQL and NoSQL engines; multi‑layered security with next‑gen firewalls and WAFs; centralized monitoring and activity logging.
  • 26
    Proofpoint Intelligent Classification and Protection
    Augment your cross-channel DLP with AI-powered classification. Proofpoint Intelligent Classification and Protection is an AI-powered approach to classifying your business-critical data. It recommends actions based on risk accelerating your enterprise DLP program. Our Intelligent Classification and Protection solution helps you understand your unstructured data in a fraction of the time required by legacy approaches. It categorizes a sample of your files using a pre-trained AI-model. And it does this across file repositories both in the cloud and on-premises. With our two-dimensional classification, you get the business context and confidentiality level you need to better protect your data in today’s hybrid world.
  • 27
    Azure Data Science Virtual Machines
    DSVMs are Azure Virtual Machine images, pre-installed, configured and tested with several popular tools that are commonly used for data analytics, machine learning and AI training. Consistent setup across team, promote sharing and collaboration, Azure scale and management, Near-Zero Setup, full cloud-based desktop for data science. Quick, Low friction startup for one to many classroom scenarios and online courses. Ability to run analytics on all Azure hardware configurations with vertical and horizontal scaling. Pay only for what you use, when you use it. Readily available GPU clusters with Deep Learning tools already pre-configured. Examples, templates and sample notebooks built or tested by Microsoft are provided on the VMs to enable easy onboarding to the various tools and capabilities such as Neural Networks (PYTorch, Tensorflow, etc.), Data Wrangling, R, Python, Julia, and SQL Server.
  • 28
    OSOS

    OSOS

    Mozn

    OSOS by Mozn is an advanced artificial intelligence (AI) platform specifically designed to understand and process the Arabic language. It is described as the most accurate large language model (LLM) built to handle the complexities inherent in Arabic. OSOS stands out for its proficiency in Arabic Natural Language Understanding (NLU), boasting the fastest and most scalable Arabic text analytics algorithms available. This platform is part of Mozn's ambitious initiative to develop the world’s largest and most effective Arabic language models. Additionally, OSOS functions as an AI-powered search engine, offering a variety of functionalities such as content generation and question answering, aimed at enhancing decision-making and operational efficiency for organizations​.
  • 29
    NVIDIA RAPIDS
    The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently.
  • 30
    Google Cloud AI Infrastructure
    Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
  • 31
    NVIDIA Picasso
    NVIDIA Picasso is a cloud service for building generative AI–powered visual applications. Enterprises, software creators, and service providers can run inference on their models, train NVIDIA Edify foundation models on proprietary data, or start from pre-trained models to generate image, video, and 3D content from text prompts. Picasso service is fully optimized for GPUs and streamlines training, optimization, and inference on NVIDIA DGX Cloud. Organizations and developers can train NVIDIA’s Edify models on their proprietary data or get started with models pre-trained with our premier partners. Expert denoising network to generate photorealistic 4K images. Temporal layers and novel video denoiser generate high-fidelity videos with temporal consistency. A novel optimization framework for generating 3D objects and meshes with high-quality geometry. Cloud service for building and deploying generative AI-powered image, video, and 3D applications.
  • 32
    Amazon Elastic Inference
    Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Sagemaker instances or Amazon ECS tasks, to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, PyTorch and ONNX models. Inference is the process of making predictions using a trained model. In deep learning applications, inference accounts for up to 90% of total operational costs for two reasons. Firstly, standalone GPU instances are typically designed for model training - not for inference. While training jobs batch process hundreds of data samples in parallel, inference jobs usually process a single input in real time, and thus consume a small amount of GPU compute. This makes standalone GPU inference cost-inefficient. On the other hand, standalone CPU instances are not specialized for matrix operations, and thus are often too slow for deep learning inference.
  • 33
    Hugging Face

    Hugging Face

    Hugging Face

    Hugging Face is a leading platform for AI and machine learning, offering a vast hub for models, datasets, and tools for natural language processing (NLP) and beyond. The platform supports a wide range of applications, from text, image, and audio to 3D data analysis. Hugging Face fosters collaboration among researchers, developers, and companies by providing open-source tools like Transformers, Diffusers, and Tokenizers. It enables users to build, share, and access pre-trained models, accelerating AI development for a variety of industries.
  • 34
    Intel Tiber AI Cloud
    Intel® Tiber™ AI Cloud is a powerful platform designed to scale AI workloads with advanced computing resources. It offers specialized AI processors, such as the Intel Gaudi AI Processor and Max Series GPUs, to accelerate model training, inference, and deployment. Optimized for enterprise-level AI use cases, this cloud solution enables developers to build and fine-tune models with support for popular libraries like PyTorch. With flexible deployment options, secure private cloud solutions, and expert support, Intel Tiber™ ensures seamless integration, fast deployment, and enhanced model performance.
  • 35
    Azure OpenAI Service
    Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.
    Starting Price: $0.0004 per 1000 tokens
  • 36
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • 37
    NVIDIA AI Enterprise
    The software layer of the NVIDIA AI platform, NVIDIA AI Enterprise accelerates the data science pipeline and streamlines development and deployment of production AI including generative AI, computer vision, speech AI and more. With over 50 frameworks, pretrained models and development tools, NVIDIA AI Enterprise is designed to accelerate enterprises to the leading edge of AI, while also simplifying AI to make it accessible to every enterprise. The adoption of artificial intelligence and machine learning has gone mainstream, and is core to nearly every company’s competitive strategy. One of the toughest challenges for enterprises is the struggle with siloed infrastructure across the cloud and on-premises data centers. AI requires their environments to be managed as a common platform, instead of islands of compute.
  • 38
    NVIDIA Brev
    NVIDIA Brev is a cloud-based platform that provides instant access to fully configured GPU environments optimized for AI and machine learning development. Its Launchables feature offers prebuilt, customizable compute setups that let developers start projects quickly without complex setup or configuration. Users can create Launchables by specifying GPU resources, Docker images, and project files, then share them easily with collaborators. The platform also offers prebuilt Launchables featuring the latest AI frameworks, microservices, and NVIDIA Blueprints to jumpstart development. NVIDIA Brev provides a seamless GPU sandbox with support for CUDA, Python, and Jupyter Lab accessible via browser or CLI. This enables developers to fine-tune, train, and deploy AI models with minimal friction and maximum flexibility.
  • 39
    NVIDIA GPU-Optimized AMI
    The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'
  • 40
    Amazon SageMaker Data Wrangler
    Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of data preparation and feature engineering, and complete each step of the data preparation workflow (including data selection, cleansing, exploration, visualization, and processing at scale) from a single visual interface. You can use SQL to select the data you want from a wide variety of data sources and import it quickly. Next, you can use the Data Quality and Insights report to automatically verify data quality and detect anomalies, such as duplicate rows and target leakage. SageMaker Data Wrangler contains over 300 built-in data transformations so you can quickly transform data without writing any code. Once you have completed your data preparation workflow, you can scale it to your full datasets using SageMaker data processing jobs; train, tune, and deploy models.
  • 41
    TensorWave

    TensorWave

    TensorWave

    TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc.
  • 42
    Centific

    Centific

    Centific

    Centific’s frontier AI data foundry platform, powered by NVIDIA edge computing, is purpose-built to accelerate AI deployments by increasing flexibility, security, and scalability through comprehensive workflow orchestration. It centralizes AI project management in a unified AI Workbench, overseeing pipelines, model training, deployment, and reporting within a single, streamlined environment, while it handles data ingestion, preprocessing, and transformation. RAG Studio simplifies retrieval-augmented generation workflows, the Product Catalog organizes reusable assets, and Safe AI Studio embeds built-in safeguards to ensure compliance, reduce hallucinations, and protect sensitive data. Its plugin-based modular architecture supports both PaaS and SaaS models with metering to monitor consumption, and a centralized model catalog offers version control, compliance checks, and flexible deployment options.
  • 43
    Google Cloud TPU
    Machine learning has produced business and research breakthroughs ranging from network security to medical diagnoses. We built the Tensor Processing Unit (TPU) in order to make it possible for anyone to achieve similar breakthroughs. Cloud TPU is the custom-designed machine learning ASIC that powers Google products like Translate, Photos, Search, Assistant, and Gmail. Here’s how you can put the TPU and machine learning to work accelerating your company’s success, especially at scale. Cloud TPU is designed to run cutting-edge machine learning models with AI services on Google Cloud. And its custom high-speed network offers over 100 petaflops of performance in a single pod, enough computational power to transform your business or create the next research breakthrough. Training machine learning models is like compiling code: you need to update often, and you want to do so as efficiently as possible. ML models need to be trained over and over as apps are built, deployed, and refined.
    Starting Price: $0.97 per chip-hour
  • 44
    Praxi

    Praxi

    Praxi.AI

    Praxi is an AI-powered data classification platform designed to transform raw data into valuable, actionable insights for regulated industries such as healthcare, finance, and defense. It offers pre-trained AI models that automate data discovery, curation, and classification, saving time and resources by eliminating manual data work. The platform scans data platforms and silos, creating a unified interface to understand data relationships, ensuring GDPR-aligned data management, and supporting automated data curation. With real-time insights, enhanced data governance, and easy system integration, Praxi helps businesses unlock the full potential of their data, improve decision-making, and ensure compliance.
  • 45
    Vertex AI Vision
    Easily build, deploy, and manage computer vision applications with a fully managed, end-to-end application development environment that reduces the time to build computer vision applications from days to minutes at one-tenth the cost of current offerings. Quickly and conveniently ingest real-time video and image streams at a global scale. Easily build computer vision applications using a drag-and-drop interface. Store and search petabytes of data with built-in AI capabilities. Vertex AI Vision includes all the tools needed to manage the life cycle of computer vision applications, across ingestion, analysis, storage, and deployment. Easily connect application output to a data destination, like BigQuery for analytics, or live streaming to drive real-time business actions. Ingest thousands of video streams from across the globe. With a monthly pricing model, enjoy up to one-tenth lower costs than previous offerings.
  • 46
    Movestax

    Movestax

    Movestax

    Movestax revolutionizes cloud infrastructure with a serverless-first platform for builders. From app deployment to serverless functions, databases, and authentication, Movestax helps you build, scale, and automate without the complexity of traditional cloud providers. Whether you’re just starting out or scaling fast, Movestax offers the services you need to grow. Deploy frontend and backend applications instantly, with integrated CI/CD. Fully managed, scalable PostgreSQL, MySQL, MongoDB, and Redis that just work. Create sophisticated workflows and integrations directly within your cloud infrastructure. Run scalable serverless functions, automating tasks without managing servers. Simplify user management with Movestax’s built-in authentication system. Access pre-built APIs and foster community collaboration to accelerate development. Store and retrieve files and backups with secure, scalable object storage.
  • 47
    Amazon SageMaker Model Monitor
    With Amazon SageMaker Model Monitor, you can select the data you would like to monitor and analyze without the need to write any code. SageMaker Model Monitor lets you select data from a menu of options such as prediction output, and captures metadata such as timestamp, model name, and endpoint so you can analyze model predictions based on the metadata. You can specify the sampling rate of data capture as a percentage of overall traffic in the case of high volume real-time predictions, and the data is stored in your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define data retention policies, and implement access control mechanisms for secure access. Amazon SageMaker Model Monitor offers built-in analysis in the form of statistical rules, to detect drifts in data and model quality. You can also write custom rules and specify thresholds for each rule.
  • 48
    Amazon SageMaker Studio
    Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models.
  • 49
    Hyperstack

    Hyperstack

    Hyperstack

    Hyperstack is the ultimate self-service, on-demand GPUaaS Platform offering the H100, A100, L40 and more, delivering its services to some of the most promising AI start-ups in the world. Hyperstack is built for enterprise-grade GPU-acceleration and optimised for AI workloads, offering NexGen Cloud’s enterprise-grade infrastructure to a wide spectrum of users, from SMEs to Blue-Chip corporations, Managed Service Providers, and tech enthusiasts. Running on 100% renewable energy and powered by NVIDIA architecture, Hyperstack offers its services at up to 75% more cost-effective than Legacy Cloud Providers. The platform supports a diverse range of high-intensity workloads, such as Generative AI, Large Language Modelling, machine learning, and rendering.
    Starting Price: $0.18 per GPU per hour
  • 50
    ZinkML

    ZinkML

    ZinkML Technologies

    ZinkML is a zero-code data science platform designed to address the challenges faced by organizations in leveraging data effectively. By providing a visual and intuitive interface, it eliminates the need for extensive coding expertise, making data science accessible to a broader range of users. ZinkML streamlines the entire data science lifecycle, from data ingestion and preparation to model building, deployment, and monitoring. Users can drag-and-drop components to create complex data pipelines, explore data visually, and build predictive models without writing a single line of code. The platform also offers automated feature engineering, model selection, and hyperparameter tuning, accelerating the model development process. Moreover, ZinkML provides robust collaboration features, enabling teams to work together seamlessly on data science projects. By democratizing data science, we empower companies to extract maximum value from their data and drive better decision-making.