Alternatives to Amazon Elastic Inference
Compare Amazon Elastic Inference alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Amazon Elastic Inference in 2025. Compare features, ratings, user reviews, pricing, and more from Amazon Elastic Inference competitors and alternatives in order to make an informed decision for your business.
-
1
RunPod
RunPod
RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure. -
2
Amazon EC2
Amazon
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure, resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers. Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction. It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment. Amazon EC2 delivers the broadest choice of compute, networking (up to 400 Gbps), and storage services purpose-built to optimize price performance for ML projects. Build, test, and sign on-demand macOS workloads. Access environments in minutes, dynamically scale capacity as needed, and benefit from AWS’s pay-as-you-go pricing. Access the on-demand infrastructure and capacity you need to run HPC applications faster and cost-effectively. Amazon EC2 delivers secure, reliable, high-performance, and cost-effective compute infrastructure to meet demanding business needs. -
3
enforza
enforza
The cost-effective alternative to AWS Network Firewall, Azure Firewall, and cloud-native NAT Gateways. Same features. Less cost. No data processing charges. enforza is a cloud-managed firewall platform that helps you build a unified multi-cloud perimeter with powerful firewall, egress filtering and NAT Gateway capabilities. With easy cloud management at its core, enforza is truly multi-cloud, enabling you to apply consistent security policies across multiple clouds and regions. - Install the agent on *your* linux instance (cloud or on-prem) with one command. - Claim your device on the portal. - Manage your policies.Starting Price: $39/month/gateway -
4
CoreWeave
CoreWeave
CoreWeave is a cloud infrastructure provider specializing in GPU-based compute solutions tailored for AI workloads. The platform offers scalable, high-performance GPU clusters that optimize the training and inference of AI models, making it ideal for industries like machine learning, visual effects (VFX), and high-performance computing (HPC). CoreWeave provides flexible storage, networking, and managed services to support AI-driven businesses, with a focus on reliability, cost efficiency, and enterprise-grade security. The platform is used by AI labs, research organizations, and businesses to accelerate their AI innovations. -
5
Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
-
6
AWS Inferentia
Amazon
AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia. -
7
Amazon EC2 Inf1 Instances
Amazon
Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.Starting Price: $0.228 per hour -
8
Amazon EC2 G4 Instances
Amazon
Amazon EC2 G4 instances are optimized for machine learning inference and graphics-intensive applications. It offers a choice between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad). G4dn instances combine NVIDIA T4 GPUs with custom Intel Cascade Lake CPUs, providing a balance of compute, memory, and networking resources. These instances are ideal for deploying machine learning models, video transcoding, game streaming, and graphics rendering. G4ad instances, featuring AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, deliver cost-effective solutions for graphics workloads. Both G4dn and G4ad instances support Amazon Elastic Inference, allowing users to attach low-cost GPU-powered inference acceleration to Amazon EC2 and reduce deep learning inference costs. They are available in various sizes to accommodate different performance needs and are integrated with AWS services such as Amazon SageMaker, Amazon ECS, and Amazon EKS. -
9
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
10
Qualcomm Cloud AI SDK
Qualcomm
The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications. -
11
Groq
Groq
Groq is on a mission to set the standard for GenAI inference speed, helping real-time AI applications come to life today. An LPU inference engine, with LPU standing for Language Processing Unit, is a new type of end-to-end processing unit system that provides the fastest inference for computationally intensive applications with a sequential component, such as AI language applications (LLMs). The LPU is designed to overcome the two LLM bottlenecks, compute density and memory bandwidth. An LPU has greater computing capacity than a GPU and CPU in regards to LLMs. This reduces the amount of time per word calculated, allowing sequences of text to be generated much faster. Additionally, eliminating external memory bottlenecks enables the LPU inference engine to deliver orders of magnitude better performance on LLMs compared to GPUs. Groq supports standard machine learning frameworks such as PyTorch, TensorFlow, and ONNX for inference. -
12
NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.Starting Price: Free
-
13
Amazon EC2 Trn1 Instances
Amazon
Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.Starting Price: $1.34 per hour -
14
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow. -
15
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data. -
16
Hugging Face Transformers
Hugging Face
Transformers is a library of pretrained natural language processing, computer vision, audio, and multimodal models for inference and training. Use Transformers to train models on your data, build inference applications, and generate text with large language models. Explore the Hugging Face Hub today to find a model and use Transformers to help you get started right away. Simple and optimized inference class for many machine learning tasks like text generation, image segmentation, automatic speech recognition, document question answering, and more. A comprehensive trainer that supports features such as mixed precision, torch.compile, and FlashAttention for training and distributed training for PyTorch models. Fast text generation with large language models and vision language models. Every model is implemented from only three main classes (configuration, model, and preprocessor) and can be quickly used for inference or training.Starting Price: $9 per month -
17
SiMa
SiMa
SiMa offers a software-centric, embedded edge machine learning system-on-chip (MLSoC) platform that delivers high-performance, low-power AI solutions for various applications. The MLSoC integrates multiple modalities, including text, image, audio, video, and haptic inputs, performing complex ML inference and presenting outputs in any modality. It supports a wide range of frameworks (e.g., TensorFlow, PyTorch, ONNX) and can compile over 250 models, providing customers with an effortless experience and world-class performance-per-watt results. Complementing the hardware, SiMa.ai is designed for complete ML stack application development. It supports any ML workflow customers plan to deploy on the edge without compromising performance and ease of use. Palette's integrated ML compiler accepts any model from any neural network framework. -
18
Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
-
19
Horovod
Horovod
Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.Starting Price: Free -
20
Amazon EMR
Amazon
Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using open-source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-premises solutions and over 3x faster than standard Apache Spark. For short-running jobs, you can spin up and spin down clusters and pay per second for the instances used. For long-running workloads, you can create highly available clusters that automatically scale to meet demand. If you have existing on-premises deployments of open-source tools such as Apache Spark and Apache Hive, you can also run EMR clusters on AWS Outposts. Analyze data using open-source ML frameworks such as Apache Spark MLlib, TensorFlow, and Apache MXNet. Connect to Amazon SageMaker Studio for large-scale model training, analysis, and reporting. -
21
NVIDIA TensorRT
NVIDIA
NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.Starting Price: Free -
22
LiteRT
Google
LiteRT (Lite Runtime), formerly known as TensorFlow Lite, is Google's high-performance runtime for on-device AI. It enables developers to deploy machine learning models across various platforms and microcontrollers. LiteRT supports models from TensorFlow, PyTorch, and JAX, converting them into the efficient FlatBuffers format (.tflite) for optimized on-device inference. Key features include low latency, enhanced privacy by processing data locally, reduced model and binary sizes, and efficient power consumption. The runtime offers SDKs in multiple languages such as Java/Kotlin, Swift, Objective-C, C++, and Python, facilitating integration into diverse applications. Hardware acceleration is achieved through delegates like GPU and iOS Core ML, improving performance on supported devices. LiteRT Next, currently in alpha, introduces a new set of APIs that streamline on-device hardware acceleration.Starting Price: Free -
23
Huawei Cloud ModelArts
Huawei Cloud
ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration. -
24
GPUonCLOUD
GPUonCLOUD
Traditionally, deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling take days or weeks time. However, with GPUonCLOUD’s dedicated GPU servers, it's a matter of hours. You may want to opt for pre-configured systems or pre-built instances with GPUs featuring deep learning frameworks like TensorFlow, PyTorch, MXNet, TensorRT, libraries e.g. real-time computer vision library OpenCV, thereby accelerating your AI/ML model-building experience. Among the wide variety of GPUs available to us, some of the GPU servers are best fit for graphics workstations and multi-player accelerated gaming. Instant jumpstart frameworks increase the speed and agility of the AI/ML environment with effective and efficient environment lifecycle management.Starting Price: $1 per hour -
25
Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have contributed to the popularity of deep learning by reducing the effort and skills needed to design, train, and use deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) provides a consistent way to run these deep-learning frameworks as a service on Kubernetes. The FfDL platform uses a microservices architecture to reduce coupling between components, keep each component simple and as stateless as possible, isolate component failures, and allow each component to be developed, tested, deployed, scaled, and upgraded independently. Leveraging the power of Kubernetes, FfDL provides a scalable, resilient, and fault-tolerant deep-learning framework. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes.
-
26
Amazon SageMaker JumpStart
Amazon
Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis. -
27
Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
-
28
Amazon EC2 G5 Instances
Amazon
Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.Starting Price: $1.006 per hour -
29
Spot Ocean
Spot by NetApp
Spot Ocean lets you reap the benefits of Kubernetes without worrying about infrastructure while gaining deep cluster visibility and dramatically reducing costs. The key question is how to use containers without the operational overhead of managing the underlying VMs while also take advantage of the cost benefits associated with Spot Instances and multi-cloud. Spot Ocean is built to solve this problem by managing containers in a “Serverless” environment. Ocean provides an abstraction on top of virtual machines allowing to deploy Kubernetes clusters without the need to manage the underlying VMs. Ocean takes advantage of multiple compute purchasing options like Reserved and Spot instance pricing and failover to On-Demand instances whenever necessary, providing 80% reduction in infrastructure costs. Spot Ocean is a Serverless Compute Engine that abstracts the provisioning (launching), auto-scaling, and management of worker nodes in Kubernetes clusters. -
30
AWS Trainium
Amazon Web Services
AWS Trainium is the second-generation Machine Learning (ML) accelerator that AWS purpose built for deep learning training of 100B+ parameter models. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance deploys up to 16 AWS Trainium accelerators to deliver a high-performance, low-cost solution for deep learning (DL) training in the cloud. Although the use of deep learning is accelerating, many development teams are limited by fixed budgets, which puts a cap on the scope and frequency of training needed to improve their models and applications. Trainium-based EC2 Trn1 instances solve this challenge by delivering faster time to train while offering up to 50% cost-to-train savings over comparable Amazon EC2 instances. -
31
Tencent Cloud GPU Service
Tencent
Cloud GPU Service is an elastic computing service that provides GPU computing power with high-performance parallel computing capabilities. As a powerful tool at the IaaS layer, it delivers high computing power for deep learning training, scientific computing, graphics and image processing, video encoding and decoding, and other highly intensive workloads. Improve your business efficiency and competitiveness with high-performance parallel computing capabilities. Set up your deployment environment quickly with auto-installed GPU drivers, CUDA, and cuDNN and preinstalled driver images. Accelerate distributed training and inference by using TACO Kit, an out-of-the-box computing acceleration engine provided by Tencent Cloud.Starting Price: $0.204/hour -
32
Exafunction
Exafunction
Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results. -
33
Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
-
34
Baidu Cloud Compute
Baidu AI Cloud
Baidu Cloud Compute (BCC) is a cloud computing service based on virtualization, distributed clusters and other technologies accumulated by Baidu over the years. Baidu Cloud Compute (BCC ) supports elastic scaling, minute-level rich and flexible billing mode, with image, snapshot, cloud security, and other value-added services, to provide you with a high-performance cloud server featuring a super high efficient cost ratio. It is suitable for high network packet receiving and sending scenarios and can support up to 22Gbps intranet bandwidth to meet the extremely high demand of Intranet transmission. With the latest generation of models, based on the second generation of Intel ® XEON ® scalable processor, XEON scalable platform, it has improved the overall performance, supporting a high-performance network, and is suitable for high computing scenarios. -
35
Azure Machine Learning
Microsoft
Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R. -
36
kluster.ai
kluster.ai
Kluster.ai is a developer-centric AI cloud platform designed to deploy, scale, and fine-tune large language models (LLMs) with speed and efficiency. Built for developers by developers, it offers Adaptive Inference, a flexible and scalable service that adjusts seamlessly to workload demands, ensuring high-performance processing and consistent turnaround times. Adaptive Inference provides three distinct processing options: real-time inference for ultra-low latency needs, asynchronous inference for cost-effective handling of flexible timing tasks, and batch inference for efficient processing of high-volume, bulk tasks. It supports a range of open-weight, cutting-edge multimodal models for chat, vision, code, and more, including Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3 . Kluster.ai's OpenAI-compatible API allows developers to integrate these models into their applications seamlessly.Starting Price: $0.15per input -
37
Amazon EC2 P5 Instances
Amazon
Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery. -
38
SuperDuperDB
SuperDuperDB
Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, and HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Deploy all your AI models to automatically compute outputs (inference) in your datastore in a single environment with simple Python commands. -
39
Prosimo
Prosimo
Applications are fragmented & distributed. The proliferation of infrastructure stacks across multi-cloud for users to access applications and to talk to each other creates complexity. The result is subpar application experience, increased operational cost, and fragmented security. Today's multi-cloud world requires a new Application eXperience Infrastructure stack—one that improves user application experience, provides secure access and optimizes cloud spend so that you can focus on business outcomes. The Prosimo Application eXperience Infrastructure (AXI) is a vertically integrated cloud-native infrastructure stack that sits in front of applications and delivers consistently faster, more secure application experiences cost-optimized. AXI gives cloud architects and operations teams a decision-oriented platform that is easy to use. Powered by data insights and machine learning models, the Prosimo AXI platform delivers better results in minutes. -
40
Gemma 2
Google
A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content. -
41
ONNX
ONNX
ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine. ONNX makes it easier to access hardware optimizations. Use ONNX-compatible runtimes and libraries designed to maximize performance across hardware. Our active community thrives under our open governance structure, which provides transparency and inclusion. We encourage you to engage and contribute. -
42
ThirdAI
ThirdAI
ThirdAI (pronunciation: /THərd ī/ Third eye) is a cutting-edge Artificial intelligence startup carving scalable and sustainable AI. ThirdAI accelerator builds hash-based processing algorithms for training and inference with neural networks. The technology is a result of 10 years of innovation in finding efficient (beyond tensor) mathematics for deep learning. Our algorithmic innovation has demonstrated how we can make Commodity x86 CPUs 15x or faster than most potent NVIDIA GPUs for training large neural networks. The demonstration has shaken the common knowledge prevailing in the AI community that specialized processors like GPUs are significantly superior to CPUs for training neural networks. Our innovation would not only benefit current AI training by shifting to lower-cost CPUs, but it should also allow the “unlocking” of AI training workloads on GPUs that were not previously feasible. -
43
Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
-
44
Amazon Lightsail
Amazon
Amazon Lightsail provides a number of features designed to help make your project quickly come to life. Designed as an all-in-one cloud platform, Lightsail offers you a one-stop shop for all your cloud needs. Take a look to see how we can help you get started on the AWS infrastructure. Lightsail offers virtual servers (instances) that are easy to set up and backed by the power and reliability of AWS. You can launch your website, web application, or project in minutes, and manage your instance from the intuitive Lightsail console or API. As you’re creating your instance, Lightsail lets you click to launch a simple operating system (OS), a pre-configured application, or a development stack - such as WordPress, Windows, Plesk, LAMP, Nginx, and more. Every Lightsail instance comes with a built-in firewall allowing you to allow or restrict traffic to your instances based on source IP, port and protocol.Starting Price: $3.50 per month -
45
Keepsake
Replicate
Keepsake is an open-source Python library designed to provide version control for machine learning experiments and models. It enables users to automatically track code, hyperparameters, training data, model weights, metrics, and Python dependencies, ensuring that all aspects of the machine learning workflow are recorded and reproducible. Keepsake integrates seamlessly with existing workflows by requiring minimal code additions, allowing users to continue training as usual while Keepsake saves code and weights to Amazon S3 or Google Cloud Storage. This facilitates the retrieval of code and weights from any checkpoint, aiding in re-training or model deployment. Keepsake supports various machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, by saving files and dictionaries in a straightforward manner. It also offers features such as experiment comparison, enabling users to analyze differences in parameters, metrics, and dependencies across experiments.Starting Price: Free -
46
Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
-
47
Amazon EC2 P4 Instances
Amazon
Amazon EC2 P4d instances deliver high performance for machine learning training and high-performance computing applications in the cloud. Powered by NVIDIA A100 Tensor Core GPUs, they offer industry-leading throughput and low-latency networking, supporting 400 Gbps instance networking. P4d instances provide up to 60% lower cost to train ML models, with an average of 2.5x better performance for deep learning models compared to previous-generation P3 and P3dn instances. Deployed in hyperscale clusters called Amazon EC2 UltraClusters, P4d instances combine high-performance computing, networking, and storage, enabling users to scale from a few to thousands of NVIDIA A100 GPUs based on project needs. Researchers, data scientists, and developers can utilize P4d instances to train ML models for use cases such as natural language processing, object detection and classification, and recommendation engines, as well as to run HPC applications like pharmaceutical discovery and more.Starting Price: $11.57 per hour -
48
DeepSpeed
Microsoft
DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training. DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU. DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.Starting Price: Free -
49
NVIDIA NeMo Megatron
NVIDIA
NVIDIA NeMo Megatron is an end-to-end framework for training and deploying LLMs with billions and trillions of parameters. NVIDIA NeMo Megatron, part of the NVIDIA AI platform, offers an easy, efficient, and cost-effective containerized framework to build and deploy LLMs. Designed for enterprise application development, it builds upon the most advanced technologies from NVIDIA research and provides an end-to-end workflow for automated distributed data processing, training large-scale customized GPT-3, T5, and multilingual T5 (mT5) models, and deploying models for inference at scale. Harnessing the power of LLMs is made easy through validated and converged recipes with predefined configurations for training and inference. Customizing models is simplified by the hyperparameter tool, which automatically searches for the best hyperparameter configurations and performance for training and inference on any given distributed GPU cluster configuration. -
50
Multipass
Canonical
Get an instant Ubuntu VM with a single command. Multipass can launch and run virtual machines and configure them with cloud-init like a public cloud. Prototype your cloud launches locally for free. The first five minutes with Multipass let you know how easy it is to have a lightweight cloud handy. Let’s launch a few LTS instances, list them, exec a command, use cloud-init and clean up old instances to start. The ”Ubuntu Server CLI cheat sheet“ is your fast path to learning the Linux command line - from basic file management to deploying Kubernetes and OpenStack. Multipass provides a command line interface to launch, manage and generally fiddle about with instances of Linux. The downloading of a minty-fresh image takes a matter of seconds, and within minutes a VM can be up and running. Launch instances of Ubuntu and initialise them with cloud-init metadata like AWS, Azure, Google, IBM and Oracle clouds. Simulate your own cloud deployment on your workstation.