Alternatives to Amazon EC2 P4 Instances
Compare Amazon EC2 P4 Instances alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Amazon EC2 P4 Instances in 2025. Compare features, ratings, user reviews, pricing, and more from Amazon EC2 P4 Instances competitors and alternatives in order to make an informed decision for your business.
-
1
CoreWeave
CoreWeave
CoreWeave is a cloud infrastructure provider specializing in GPU-based compute solutions tailored for AI workloads. The platform offers scalable, high-performance GPU clusters that optimize the training and inference of AI models, making it ideal for industries like machine learning, visual effects (VFX), and high-performance computing (HPC). CoreWeave provides flexible storage, networking, and managed services to support AI-driven businesses, with a focus on reliability, cost efficiency, and enterprise-grade security. The platform is used by AI labs, research organizations, and businesses to accelerate their AI innovations. -
2
Amazon EC2 P5 Instances
Amazon
Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery. -
3
Amazon EC2 G4 Instances
Amazon
Amazon EC2 G4 instances are optimized for machine learning inference and graphics-intensive applications. It offers a choice between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad). G4dn instances combine NVIDIA T4 GPUs with custom Intel Cascade Lake CPUs, providing a balance of compute, memory, and networking resources. These instances are ideal for deploying machine learning models, video transcoding, game streaming, and graphics rendering. G4ad instances, featuring AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, deliver cost-effective solutions for graphics workloads. Both G4dn and G4ad instances support Amazon Elastic Inference, allowing users to attach low-cost GPU-powered inference acceleration to Amazon EC2 and reduce deep learning inference costs. They are available in various sizes to accommodate different performance needs and are integrated with AWS services such as Amazon SageMaker, Amazon ECS, and Amazon EKS. -
4
Amazon EC2 UltraClusters
Amazon
Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times. -
5
NVIDIA GPU-Optimized AMI
Amazon
The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'Starting Price: $3.06 per hour -
6
AWS Elastic Fabric Adapter (EFA)
United States
Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications. -
7
Amazon EC2 G5 Instances
Amazon
Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.Starting Price: $1.006 per hour -
8
Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
-
9
Google Cloud GPUs
Google
Speed up compute jobs like machine learning and HPC. A wide selection of GPUs to match a range of performance and price points. Flexible pricing and machine customizations to optimize your workload. High-performance GPUs on Google Cloud for machine learning, scientific computing, and 3D visualization. NVIDIA K80, P100, P4, T4, V100, and A100 GPUs provide a range of compute options to cover your workload for each cost and performance need. Optimally balance the processor, memory, high-performance disk, and up to 8 GPUs per instance for your individual workload. All with the per-second billing, so you only pay only for what you need while you are using it. Run GPU workloads on Google Cloud Platform where you have access to industry-leading storage, networking, and data analytics technologies. Compute Engine provides GPUs that you can add to your virtual machine instances. Learn what you can do with GPUs and what types of GPU hardware are available.Starting Price: $0.160 per GPU -
10
Bright Cluster Manager
NVIDIA
NVIDIA Bright Cluster Manager offers fast deployment and end-to-end management for heterogeneous high-performance computing (HPC) and AI server clusters at the edge, in the data center, and in multi/hybrid-cloud environments. It automates provisioning and administration for clusters ranging in size from a couple of nodes to hundreds of thousands, supports CPU-based and NVIDIA GPU-accelerated systems, and enables orchestration with Kubernetes. Heterogeneous high-performance Linux clusters can be quickly built and managed with NVIDIA Bright Cluster Manager, supporting HPC, machine learning, and analytics applications that span from core to edge to cloud. NVIDIA Bright Cluster Manager is ideal for heterogeneous environments, supporting Arm® and x86-based CPU nodes, and is fully optimized for accelerated computing with NVIDIA GPUs and NVIDIA DGX™ systems. -
11
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow. -
12
NVIDIA DGX Cloud
NVIDIA
NVIDIA DGX Cloud offers a fully managed, end-to-end AI platform that leverages the power of NVIDIA’s advanced hardware and cloud computing services. This platform allows businesses and organizations to scale AI workloads seamlessly, providing tools for machine learning, deep learning, and high-performance computing (HPC). DGX Cloud integrates seamlessly with leading cloud providers, delivering the performance and flexibility required to handle the most demanding AI applications. This service is ideal for businesses looking to enhance their AI capabilities without the need to manage physical infrastructure. -
13
AWS HPC
Amazon
AWS High Performance Computing (HPC) services empower users to execute large-scale simulations and deep learning workloads in the cloud, providing virtually unlimited compute capacity, high-performance file systems, and high-throughput networking. This suite of services accelerates innovation by offering a broad range of cloud-based tools, including machine learning and analytics, enabling rapid design and testing of new products. Operational efficiency is maximized through on-demand access to compute resources, allowing users to focus on complex problem-solving without the constraints of traditional infrastructure. AWS HPC solutions include Elastic Fabric Adapter (EFA) for low-latency, high-bandwidth networking, AWS Batch for scaling computing jobs, AWS ParallelCluster for simplified cluster deployment, and Amazon FSx for high-performance file systems. These services collectively provide a flexible and scalable environment tailored to diverse HPC workloads. -
14
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
15
NVIDIA NGC
NVIDIA
NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI. -
16
QumulusAI
QumulusAI
QumulusAI delivers supercomputing without constraint, combining scalable HPC with grid-independent data centers to break bottlenecks and power the future of AI. QumulusAI is universalizing access to AI supercomputing, removing the constraints of legacy HPC and delivering the scalable, high-performance computing AI demands today. And tomorrow too. No virtualization overhead, no noisy neighbors, just dedicated, direct access to AI servers optimized with NVIDIA’s latest GPUs (H200) and Intel/AMD CPUs. QumulusAI offers HPC infrastructure uniquely configured around your specific workloads, instead of legacy providers’ one-size-fits-all approach. We collaborate with you through design, deployment, to ongoing optimization, adapting as your AI projects evolve, so you get exactly what you need at each step. We own the entire stack. That means better performance, greater control, and more predictable costs than with other providers who coordinate with third-party vendors. -
17
Amazon EC2 Trn1 Instances
Amazon
Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.Starting Price: $1.34 per hour -
18
Amazon S3 Express One Zone
Amazon
Amazon S3 Express One Zone is a high-performance, single-Availability Zone storage class purpose-built to deliver consistent single-digit millisecond data access for your most frequently accessed data and latency-sensitive applications. It offers data access speeds up to 10 times faster and requests costs up to 50% lower than S3 Standard. With S3 Express One Zone, you can select a specific AWS Availability Zone within an AWS Region to store your data, allowing you to co-locate your storage and compute resources in the same Availability Zone to further optimize performance, which helps lower compute costs and run workloads faster. Data is stored in a different bucket type, an S3 directory bucket, which supports hundreds of thousands of requests per second. Additionally, you can use S3 Express One Zone with services such as Amazon SageMaker Model Training, Amazon Athena, Amazon EMR, and AWS Glue Data Catalog to accelerate your machine learning and analytics workloads. -
19
Intel Tiber AI Cloud
Intel
Intel® Tiber™ AI Cloud is a powerful platform designed to scale AI workloads with advanced computing resources. It offers specialized AI processors, such as the Intel Gaudi AI Processor and Max Series GPUs, to accelerate model training, inference, and deployment. Optimized for enterprise-level AI use cases, this cloud solution enables developers to build and fine-tune models with support for popular libraries like PyTorch. With flexible deployment options, secure private cloud solutions, and expert support, Intel Tiber™ ensures seamless integration, fast deployment, and enhanced model performance.Starting Price: Free -
20
AWS Parallel Computing Service (AWS PCS) is a managed service that simplifies running and scaling high-performance computing workloads and building scientific and engineering models on AWS using Slurm. It enables the creation of complete, elastic environments that integrate computing, storage, networking, and visualization tools, allowing users to focus on research and innovation without the burden of infrastructure management. AWS PCS offers managed updates and built-in observability features, enhancing cluster operations and maintenance. Users can build and deploy scalable, reliable, and secure HPC clusters through the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDK. The service supports various use cases, including tightly coupled workloads like computer-aided engineering, high-throughput computing such as genomics analysis, accelerated computing with GPUs, and custom silicon like AWS Trainium and AWS Inferentia.Starting Price: $0.5977 per hour
-
21
Azure FXT Edge Filer
Microsoft
Create cloud-integrated hybrid storage that works with your existing network-attached storage (NAS) and Azure Blob Storage. This on-premises caching appliance optimizes access to data in your datacenter, in Azure, or across a wide-area network (WAN). A combination of software and hardware, Microsoft Azure FXT Edge Filer delivers high throughput and low latency for hybrid storage infrastructure supporting high-performance computing (HPC) workloads.Scale-out clustering provides non-disruptive NAS performance scaling. Join up to 24 FXT nodes per cluster to scale to millions of IOPS and hundreds of GB/s. When you need performance and scale in file-based workloads, Azure FXT Edge Filer keeps your data on the fastest path to processing resources. Managing data storage is easy with Azure FXT Edge Filer. Shift aging data to Azure Blob Storage to keep it easily accessible with minimal latency. Balance on-premises and cloud storage. -
22
AWS ParallelCluster
Amazon
AWS ParallelCluster is an open-source cluster management tool that simplifies the deployment and management of High-Performance Computing (HPC) clusters on AWS. It automates the setup of required resources, including compute nodes, a shared filesystem, and a job scheduler, supporting multiple instance types and job submission queues. Users can interact with ParallelCluster through a graphical user interface, command-line interface, or API, enabling flexible cluster configuration and management. The tool integrates with job schedulers like AWS Batch and Slurm, facilitating seamless migration of existing HPC workloads to the cloud with minimal modifications. AWS ParallelCluster is available at no additional charge; users only pay for the AWS resources consumed by their applications. With AWS ParallelCluster, you can use a simple text file to model, provision, and dynamically scale the resources needed for your applications in an automated and secure manner. -
23
Volcano Engine
Volcano Engine
Volcengine is ByteDance’s cloud platform delivering a full spectrum of IaaS, PaaS, and AI services under its Volcano Ark ecosystem through global, multi‑region infrastructure. It provides elastic compute instances (CPU, GPU, and TPU), high‑performance block and object storage, virtual networking, and managed databases, all designed for seamless scalability and pay‑as‑you‑go flexibility. Integrated AI capabilities offer natural language processing, computer vision, and speech recognition via prebuilt models or custom training pipelines, while a content delivery network and Engine VE SDK enable adaptive‑bitrate streaming, low‑latency media delivery, and real‑time AR/VR rendering. The platform’s security framework includes end‑to‑end encryption, fine‑grained access control, and automated threat detection, backed by compliance certifications. -
24
NVIDIA DIGITS
NVIDIA DIGITS
The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging. -
25
NVIDIA Modulus
NVIDIA
NVIDIA Modulus is a neural network framework that blends the power of physics in the form of governing partial differential equations (PDEs) with data to build high-fidelity, parameterized surrogate models with near-real-time latency. Whether you’re looking to get started with AI-driven physics problems or designing digital twin models for complex non-linear, multi-physics systems, NVIDIA Modulus can support your work. Offers building blocks for developing physics machine learning surrogate models that combine both physics and data. The framework is generalizable to different domains and use cases—from engineering simulations to life sciences and from forward simulations to inverse/data assimilation problems. Provides parameterized system representation that solves for multiple scenarios in near real time, letting you train once offline to infer in real time repeatedly. -
26
Parasail
Parasail
Parasail is an AI deployment network offering scalable, cost-efficient access to high-performance GPUs for AI workloads. It provides three primary services, serverless endpoints for real-time inference, Dedicated instances for private model deployments, and Batch processing for large-scale tasks. Users can deploy open source models like DeepSeek R1, LLaMA, and Qwen, or bring their own, with the platform's permutation engine matching workloads to optimal hardware, including NVIDIA's H100, H200, A100, and 4090 GPUs. Parasail emphasizes rapid deployment, with the ability to scale from a single GPU to clusters within minutes, and offers significant cost savings, claiming up to 30x cheaper compute compared to legacy cloud providers. It supports day-zero availability for new models and provides a self-service interface without long-term contracts or vendor lock-in.Starting Price: $0.80 per million tokens -
27
NVIDIA Run:ai
NVIDIA
NVIDIA Run:ai is an enterprise platform designed to optimize AI workloads and orchestrate GPU resources efficiently. It dynamically allocates and manages GPU compute across hybrid, multi-cloud, and on-premises environments, maximizing utilization and scaling AI training and inference. The platform offers centralized AI infrastructure management, enabling seamless resource pooling and workload distribution. Built with an API-first approach, Run:ai integrates with major AI frameworks and machine learning tools to support flexible deployment anywhere. It also features a powerful policy engine for strategic resource governance, reducing manual intervention. With proven results like 10x GPU availability and 5x utilization, NVIDIA Run:ai accelerates AI development cycles and boosts ROI. -
28
Akamai Cloud
Akamai
Akamai Cloud (formerly Linode) is the world’s most distributed cloud computing platform, designed to help businesses deploy low-latency, high-performance applications anywhere. It delivers GPU acceleration, managed Kubernetes, object storage, and compute instances optimized for AI, media, and SaaS workloads. With flat, predictable pricing and low egress fees, Akamai Cloud offers a transparent and cost-effective alternative to traditional hyperscalers. Its global infrastructure ensures faster response times, improved reliability, and data sovereignty across key regions. Developers can scale securely using Akamai’s firewall, database, and networking solutions, all managed through an intuitive interface or API. Backed by enterprise-grade support and compliance, Akamai Cloud empowers organizations to innovate confidently at the edge. -
29
IREN Cloud
IREN
IREN’s AI Cloud is a GPU-cloud platform built on NVIDIA reference architecture and non-blocking 3.2 TB/s InfiniBand networking, offering bare-metal GPU clusters designed for high-performance AI training and inference workloads. The service supports a range of NVIDIA GPU models with specifications such as large amounts of RAM, vCPUs, and NVMe storage. The cloud is fully integrated and vertically controlled by IREN, giving clients operational flexibility, reliability, and 24/7 in-house support. Users can monitor performance metrics, optimize GPU spend, and maintain secure, isolated environments with private networking and tenant separation. It allows deployment of users’ own data, models, frameworks (TensorFlow, PyTorch, JAX), and container technologies (Docker, Apptainer) with root access and no restrictions. It is optimized to scale for demanding applications, including fine-tuning large language models. -
30
WhiteFiber
WhiteFiber
WhiteFiber is a vertically integrated AI infrastructure platform offering high-performance GPU cloud and HPC colocation solutions tailored for AI/ML workloads. Its cloud platform is purpose-built for machine learning, large language models, and deep learning, featuring NVIDIA H200, B200, and GB200 GPUs, ultra-fast Ethernet and InfiniBand networking, and up to 3.2 Tb/s GPU fabric bandwidth. WhiteFiber's infrastructure supports seamless scaling from hundreds to tens of thousands of GPUs, with flexible deployment options including bare metal, containers, and virtualized environments. It ensures enterprise-grade support and SLAs, with proprietary cluster management, orchestration, and observability software. WhiteFiber's data centers provide AI and HPC-optimized colocation with high-density power, direct liquid cooling, and accelerated deployment timelines, along with cross-data center dark fiber connectivity for redundancy and scale. -
31
GPU Trader
GPU Trader
GPU Trader is a secure, enterprise-class marketplace that connects organizations with high-performance GPUs in on-demand and reserved instance models. It offers instant access to powerful GPUs tailored for AI, machine learning, data analytics, and high-performance compute workloads. With flexible pricing options and instance templates, users can scale effortlessly and pay only for what they use. It ensures complete security with a zero-trust architecture, transparent billing, and real-time performance monitoring. GPU Trader's decentralized architecture maximizes GPU efficiency and scalability with secure workload management across distributed networks. GPU Trader manages workload dispatch and real-time monitoring, while containerized agents on GPUs autonomously execute tasks. AI-driven validation ensures all GPUs meet high-performance standards, providing reliable resources for renters.Starting Price: $0.99 per hour -
32
NetMind AI
NetMind AI
NetMind.AI is a decentralized computing platform and AI ecosystem designed to accelerate global AI innovation. By leveraging idle GPU resources worldwide, it offers accessible and affordable AI computing power to individuals, businesses, and organizations of all sizes. The platform provides a range of services, including GPU rental, serverless inference, and an AI ecosystem that encompasses data processing, model training, inference, and agent development. Users can rent GPUs at competitive prices, deploy models effortlessly with on-demand serverless inference, and access a wide array of open-source AI model APIs with high-throughput, low-latency performance. NetMind.AI also enables contributors to add their idle GPUs to the network, earning NetMind Tokens (NMT) as rewards. These tokens facilitate transactions on the platform, allowing users to pay for services such as training, fine-tuning, inference, and GPU rentals. -
33
Oracle Cloud Infrastructure provides fast, flexible, and affordable compute capacity to fit any workload need from performant bare metal servers and VMs to lightweight containers. OCI Compute provides uniquely flexible VM and bare metal instances for optimal price-performance. Select exactly the number of cores and the memory your applications need. Delivering high performance for enterprise workloads. Simplify application development with serverless computing. Your choice of technologies includes Kubernetes and containers. NVIDIA GPUs for machine learning, scientific visualization, and other graphics processing. Capabilities such as RDMA, high-performance storage, and network traffic isolation. Oracle Cloud Infrastructure consistently delivers better price performance than other cloud providers. Virtual machine-based (VM) shapes offer customizable core and memory combinations. Customers can optimize costs by choosing a specific number of cores.Starting Price: $0.007 per hour
-
34
CloudPe
Leapswitch Networks
CloudPe is a global cloud solutions provider offering scalable and secure cloud technologies tailored for businesses of all sizes. As a collaborative venture between Leapswitch Networks and Strad Solutions, CloudPe combines extensive industry expertise to deliver innovative services. Key Offerings: Virtual Machines: High-performance VMs designed for various business needs, including hosting websites, building applications, and data processing. GPU Instances: NVIDIA-powered GPUs for AI, machine learning, and high-performance computing, available on-demand. Kubernetes-as-a-Service: Simplified container orchestration for deploying and managing containerized applications efficiently. S3-Compatible Storage: Highly scalable and cost-effective storage solutions. Load Balancers: Intelligent load balancing to distribute traffic evenly across resources, ensuring fast and reliable performance. Why Choose CloudPe? 1. Reliability 2. Cost Efficiency 3. Instant DeploymentStarting Price: ₹931/month -
35
DeepSpeed
Microsoft
DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training. DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU. DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.Starting Price: Free -
36
Segmind
Segmind
Segmind provides simplified access to large computing. You can use it to run your high-performance workloads such as Deep learning training or other complex processing jobs. Segmind offers zero-setup environments within minutes and lets your share access with your team members. Segmind's MLOps platform can also be used to manage deep learning projects end-to-end with integrated data storage and experiment tracking. ML engineers are not cloud engineers and cloud infrastructure management is a pain. So, we abstracted away all of it so that your ML team can focus on what they do best, and build models better and faster. Training ML/DL models take time and can get expensive quickly. But with Segmind, you can scale up your compute seamlessly while also reducing your costs by up to 70%, with our managed spot instances. ML managers today don't have a bird's eye view of ML development activities and cost.Starting Price: $5 -
37
AWS Inferentia
Amazon
AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia. -
38
Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
-
39
Cirrascale
Cirrascale
Our high-throughput storage systems can serve millions of small, random files to GPU-based training servers accelerating overall training times. We offer high-bandwidth, low-latency networks for connecting distributed training servers as well as transporting data between storage and servers. Other cloud providers squeeze you with extra fees and charges to get your data out of their storage clouds, and those can add up fast. We consider ourselves an extension of your team. We work with you to set up scheduling services, help with best practices, and provide superior support. Workflows can vary from company to company. Cirrascale works to ensure you get the right solution for your needs to get you the best results. Cirrascale is the only provider that works with you to tailor your cloud instances to increase performance, remove bottlenecks, and optimize your workflow. Cloud-based solutions to accelerate your training, simulation, and re-simulation time.Starting Price: $2.49 per hour -
40
Massed Compute
Massed Compute
Massed Compute offers high-performance GPU computing solutions tailored for AI, machine learning, scientific simulations, and data analytics. As an NVIDIA Preferred Partner, it provides access to a comprehensive catalog of enterprise-grade NVIDIA GPUs, including A100, H100, L40, and A6000, ensuring optimal performance for various workloads. Users can choose between bare metal servers for maximum control and performance or on-demand compute instances for flexibility and scalability. Massed Compute's Inventory API allows seamless integration of GPU resources into existing business platforms, enabling provisioning, rebooting, and management of instances with ease. Massed Compute's infrastructure is housed in Tier III data centers, offering consistent uptime, advanced redundancy, and efficient cooling systems. With SOC 2 Type II compliance, the platform ensures high standards of security and data protection.Starting Price: $21.60 per hour -
41
Burncloud
Burncloud
Burncloud is a leading cloud computing service provider focused on delivering efficient, reliable, and secure GPU rental solutions for businesses. Our platform operates on a systemized model designed to meet the high-performance computing needs of various enterprises. Core Services Online GPU Rental Services: We offer a variety of GPU models for rent, including data center-grade devices and edge consumer-level computing equipment, to meet the diverse computational needs of businesses. Our best-selling products currently include: RTX 4070, RTX 3070 Ti, H100 PCIe, RTX 3090 Ti, RTX 3060, NVIDIA 4090, L40, RTX 3080 Ti, L40S, RTX 4090, RTX 3090, A10, H100 SXM, H100 NVL, A100 PCIe 80GB, and more. Compute Cluster Setup Services: Our technical team has extensive experience in IB networking technology and has successfully completed the setup of five 256-node clusters. For cluster setup services, please contact the customer service team on the Burncloud official website.Starting Price: $0.03/hour -
42
TensorWave
TensorWave
TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc. -
43
FPT Cloud
FPT Cloud
FPT Cloud is a next‑generation cloud computing and AI platform that streamlines innovation by offering a robust, modular ecosystem of over 80 services, from compute, storage, database, networking, and security to AI development, backup, disaster recovery, and data analytics, built to international standards. Its offerings include scalable virtual servers with auto‑scaling and 99.99% uptime; GPU‑accelerated infrastructure tailored for AI/ML workloads; FPT AI Factory, a comprehensive AI lifecycle suite powered by NVIDIA supercomputing (including infrastructure, model pre‑training, fine‑tuning, model serving, AI notebooks, and data hubs); high‑performance object and block storage with S3 compatibility and encryption; Kubernetes Engine for managed container orchestration with cross‑cloud portability; managed database services across SQL and NoSQL engines; multi‑layered security with next‑gen firewalls and WAFs; centralized monitoring and activity logging. -
44
Lambda
Lambda
Lambda was founded in 2012 by published AI engineers with the vision to enable a world where Superintelligence enhances human progress, by making access to computation as effortless and ubiquitous as electricity. Today, the world’s leading AI teams trust Lambda to deploy gigawatt-scale AI Factories for training and inference, engineered for security, reliability, and mission-critical performance. Lambda is where AI teams find infinite scale to produce intelligence: from prototyping on on-demand compute to serving billions of users in production, Lambda guides and equips the world's most AI-advanced organizations to securely build and deploy AI products. -
45
AceCloud
AceCloud
AceCloud is a comprehensive public cloud and cybersecurity platform designed to support businesses with scalable, secure, and high-performance infrastructure. Its public cloud services include compute options tailored for RAM-intensive, CPU-intensive, and spot instances, as well as cloud GPU offerings featuring NVIDIA A2, A30, A100, L4, L40S, RTX A6000, RTX 8000, and H100 GPUs. It provides Infrastructure as a Service (IaaS), enabling users to deploy virtual machines, storage, and networking resources on demand. Storage solutions encompass object storage, block storage, volume snapshots, and instance backups, ensuring data integrity and accessibility. AceCloud also offers managed Kubernetes services for container orchestration and supports private cloud deployments, including fully managed cloud, one-time deployment, hosted private cloud, and virtual private servers.Starting Price: $0.0073 per hour -
46
Nscale
Nscale
Nscale is the Hyperscaler engineered for AI, offering high-performance computing optimized for training, fine-tuning, and intensive workloads. From our data centers to our software stack, we are vertically integrated in Europe to provide unparalleled performance, efficiency, and sustainability. Access thousands of GPUs tailored to your requirements using our AI cloud platform. Reduce costs, grow revenue, and run your AI workloads more efficiently on a fully integrated platform. Whether you're using Nscale's built-in AI/ML tools or your own, our platform is designed to simplify the journey from development to production. The Nscale Marketplace offers users access to various AI/ML tools and resources, enabling efficient and scalable model development and deployment. Serverless allows seamless, scalable AI inference without the need to manage infrastructure. It automatically scales to meet demand, ensuring low latency and cost-effective inference for popular generative AI models. -
47
FluidStack
FluidStack
Unlock 3-5x better prices than traditional clouds. FluidStack aggregates under-utilized GPUs from data centers around the world to deliver the industry’s best economics. Deploy 50,000+ high-performance servers in seconds via a single platform and API. Access large-scale A100 and H100 clusters with InfiniBand in days. Train, fine-tune, and deploy LLMs on thousands of affordable GPUs in minutes with FluidStack. FluidStack unites individual data centers to overcome monopolistic GPU cloud pricing. Compute 5x faster while making the cloud efficient. Instantly access 47,000+ unused servers with tier 4 uptime and security from one simple interface. Train larger models, deploy Kubernetes clusters, render quicker, and stream with no latency. Setup in one click with custom images and APIs to deploy in seconds. 24/7 direct support via Slack, emails, or calls, our engineers are an extension of your team.Starting Price: $1.49 per month -
48
CUDO Compute
CUDO Compute
CUDO Compute is a high-performance GPU cloud platform built for AI workloads, offering on-demand and reserved clusters designed to scale. Users can deploy powerful GPUs for demanding AI tasks, choosing from a global pool of high-performance GPUs such as NVIDIA H100 SXM, H100 PCIe, HGX B200, GB200 NVL72, A800 PCIe, H200 SXM, B100, A40, L40S, A100 PCIe, V100, RTX 4000 SFF Ada, RTX A4000, RTX A5000, RTX A6000, and AMD MI250/300. It allows spinning up instances in seconds, providing full control to run AI workloads with speed and flexibility to scale globally while meeting compliance requirements. CUDO Compute offers flexible virtual machines for agile workloads, ideal for development, testing, and lightweight production, featuring minute-based billing, high-speed NVMe storage, and full configurability. For teams requiring direct hardware access, dedicated bare metal servers deliver maximum performance without virtualization.Starting Price: $1.73 per hour -
49
Aqaba.ai
Aqaba.ai
Aqaba.ai is a cloud GPU platform that gives AI developers instant access to high-performance computing power without the typical barriers of cost, availability, or environmental guilt. We provide dedicated H100s, A100s, and RTX GPUs that launch in seconds, not hours, with simple hourly pricing and no hidden fees. Unlike traditional cloud providers where you're stuck in waitlists or sharing resources with other users, every GPU instance on Aqaba.ai is exclusively yours, ensuring predictable performance for training everything from computer vision models to large language models.Starting Price: $0.39/hour -
50
Qualcomm Cloud AI SDK
Qualcomm
The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.