Universal Sentence EncoderTensorflow
|
||||||
Related Products
|
||||||
About
SiMa offers a software-centric, embedded edge machine learning system-on-chip (MLSoC) platform that delivers high-performance, low-power AI solutions for various applications. The MLSoC integrates multiple modalities, including text, image, audio, video, and haptic inputs, performing complex ML inference and presenting outputs in any modality. It supports a wide range of frameworks (e.g., TensorFlow, PyTorch, ONNX) and can compile over 250 models, providing customers with an effortless experience and world-class performance-per-watt results. Complementing the hardware, SiMa.ai is designed for complete ML stack application development. It supports any ML workflow customers plan to deploy on the edge without compromising performance and ease of use. Palette's integrated ML compiler accepts any model from any neural network framework.
|
About
The Universal Sentence Encoder (USE) encodes text into high-dimensional vectors that can be utilized for tasks such as text classification, semantic similarity, and clustering. It offers two model variants: one based on the Transformer architecture and another on Deep Averaging Network (DAN), allowing a balance between accuracy and computational efficiency. The Transformer-based model captures context-sensitive embeddings by processing the entire input sequence simultaneously, while the DAN-based model computes embeddings by averaging word embeddings, followed by a feedforward neural network. These embeddings facilitate efficient semantic similarity calculations and enhance performance on downstream tasks with minimal supervised training data. The USE is accessible via TensorFlow Hub, enabling seamless integration into various applications.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Robotics engineers developing autonomous systems, seeking a solution for deploying efficient, real-time machine learning applications at the embedded edge
|
Audience
Data scientists and machine learning engineers seeking a tool to optimize their natural language processing models with robust sentence embeddings
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationSiMa
United States
sima.ai/
|
Company InformationTensorflow
Founded: 2015
United States
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
|
|||||
Alternatives |
Alternatives |
|||||
|
||||||
|
||||||
|
|
|||||
|
|
|||||
Categories |
Categories |
|||||
|
|