Universal Sentence EncoderTensorflow
|
||||||
Related Products
|
||||||
About
The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging.
|
About
The Universal Sentence Encoder (USE) encodes text into high-dimensional vectors that can be utilized for tasks such as text classification, semantic similarity, and clustering. It offers two model variants: one based on the Transformer architecture and another on Deep Averaging Network (DAN), allowing a balance between accuracy and computational efficiency. The Transformer-based model captures context-sensitive embeddings by processing the entire input sequence simultaneously, while the DAN-based model computes embeddings by averaging word embeddings, followed by a feedforward neural network. These embeddings facilitate efficient semantic similarity calculations and enhance performance on downstream tasks with minimal supervised training data. The USE is accessible via TensorFlow Hub, enabling seamless integration into various applications.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Engineers and data scientists seeking a deep learning GPU training system solution to improve their image classification research
|
Audience
Data scientists and machine learning engineers seeking a tool to optimize their natural language processing models with robust sentence embeddings
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationNVIDIA DIGITS
Founded: 1993
United States
developer.nvidia.com/digits
|
Company InformationTensorflow
Founded: 2015
United States
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|||||
|
|
|||||
|
||||||
|
||||||
Categories |
Categories |
|||||
Integrations
TensorFlow
Caffe
Dask
Google Colab
NetApp AIPod
Torch
Unleash live
|
Integrations
TensorFlow
Caffe
Dask
Google Colab
NetApp AIPod
Torch
Unleash live
|
|||||
|
|