GloVeStanford NLP
|
||||||
Related Products
|
||||||
About
GloVe (Global Vectors for Word Representation) is an unsupervised learning algorithm developed by the Stanford NLP Group to obtain vector representations for words. It constructs word embeddings by analyzing global word-word co-occurrence statistics from a given corpus, resulting in vector spaces where the geometric relationships reflect semantic similarities and differences among words. A notable feature of GloVe is its ability to capture linear substructures within the word vector space, enabling vector arithmetic to express relationships. The model is trained on the non-zero entries of a global word-word co-occurrence matrix, which records how frequently pairs of words appear together in a corpus. This approach efficiently leverages statistical information by focusing on significant co-occurrences, leading to meaningful word representations. Pre-trained word vectors are available for various corpora, including Wikipedia 2014.
|
About
No one wants their AI to respond with out-of-date information to a customer. Neum AI helps companies have accurate and up-to-date context in their AI applications. Use built-in connectors for data sources like Amazon S3 and Azure Blob Storage, vector stores like Pinecone and Weaviate to set up your data pipelines in minutes. Supercharge your data pipeline by transforming and embedding your data with built-in connectors for embedding models like OpenAI and Replicate, and serverless functions like Azure Functions and AWS Lambda. Leverage role-based access controls to make sure only the right people can access specific vectors. Bring your own embedding models, vector stores and sources. Ask us about how you can even run Neum AI in your own cloud.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Data scientists in search of a solution to enhance their natural language processing models with word embeddings that capture global statistical information from large text corpora
|
Audience
Developers searching for a platform to connect and sync data into vector stores for fast query and search
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationStanford NLP
United States
nlp.stanford.edu/projects/glove/
|
Company InformationNeum AI
www.neum.ai/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
||||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
AWS Lambda
Amazon S3
Azure Blob Storage
Azure Functions
ChatGPT
GPT-3
GPT-3.5
GPT-4
OpenAI
Replicate
|
Integrations
AWS Lambda
Amazon S3
Azure Blob Storage
Azure Functions
ChatGPT
GPT-3
GPT-3.5
GPT-4
OpenAI
Replicate
|
|||||
|
|
|