E5 Text EmbeddingsMicrosoft
|
Nomic EmbedNomic
|
|||||
Related Products
|
||||||
About
E5 Text Embeddings, developed by Microsoft, are advanced models designed to convert textual data into meaningful vector representations, enhancing tasks like semantic search and information retrieval. These models are trained using weakly-supervised contrastive learning on a vast dataset of over one billion text pairs, enabling them to capture intricate semantic relationships across multiple languages. The E5 family includes models of varying sizes—small, base, and large—offering a balance between computational efficiency and embedding quality. Additionally, multilingual versions of these models have been fine-tuned to support diverse languages, ensuring broad applicability in global contexts. Comprehensive evaluations demonstrate that E5 models achieve performance on par with state-of-the-art, English-only models of similar sizes.
|
About
Nomic Embed is a suite of open source, high-performance embedding models designed for various applications, including multilingual text, multimodal content, and code. The ecosystem includes models like Nomic Embed Text v2, which utilizes a Mixture-of-Experts (MoE) architecture to support over 100 languages with efficient inference using 305M active parameters. Nomic Embed Text v1.5 offers variable embedding dimensions (64 to 768) through Matryoshka Representation Learning, enabling developers to balance performance and storage needs. For multimodal applications, Nomic Embed Vision v1.5 aligns with the text models to provide a unified latent space for text and image data, facilitating seamless multimodal search. Additionally, Nomic Embed Code delivers state-of-the-art performance on code embedding tasks across multiple programming languages.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
E5 Text Embeddings are designed for AI researchers, machine learning engineers, and developers seeking high-quality text representations for applications like semantic search, information retrieval, and multilingual NLP tasks
|
Audience
Machine learning engineers and developers seeking a solution offering embedding models for multilingual text, multimodal content, and code applications
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and VideosNo images available
|
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationMicrosoft
Founded: 1975
United States
github.com/microsoft/unilm/tree/master/e5
|
Company InformationNomic
United States
www.nomic.ai/embed
|
|||||
Alternatives |
Alternatives |
|||||
|
|
||||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
Baseten
Go
Java
JavaScript
PHP
Python
Ruby
|
||||||
|
|
|