+
+

Related Products

  • Qloo
    23 Ratings
    Visit Website
  • JOpt.TourOptimizer
    8 Ratings
    Visit Website
  • Nutrient SDK
    100 Ratings
    Visit Website
  • DXcharts
    28 Ratings
    Visit Website
  • Vertex AI
    783 Ratings
    Visit Website
  • SDS Manager
    4 Ratings
    Visit Website
  • Highcharts
    123 Ratings
    Visit Website
  • Fraud.net
    56 Ratings
    Visit Website
  • Wiz
    1,088 Ratings
    Visit Website
  • Nasdaq Metrio
    14 Ratings
    Visit Website

About

ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.

About

Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Audience

Developers, professionals and researchers seeking a solution for training deep learning models

Audience

Researchers in need of an open source machine learning solution to accelerate research prototyping and production deployment

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

API

Offers API

API

Offers API

Screenshots and Videos

Screenshots and Videos

Pricing

No information available.
Free Version
Free Trial

Pricing

No information available.
Free Version
Free Trial

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Company Information

ConvNetJS
cs.stanford.edu/people/karpathy/convnetjs/

Company Information

PyTorch
Founded: 2016
pytorch.org

Alternatives

Alternatives

Core ML

Core ML

Apple
Create ML

Create ML

Apple
DeepSpeed

DeepSpeed

Microsoft
Deci

Deci

Deci AI
AWS Neuron

AWS Neuron

Amazon Web Services

Categories

Categories

Integrations

AWS Elastic Fabric Adapter (EFA)
Akira AI
Amazon EC2 P4 Instances
Cameralyze
Cleanlab
Database Mart
EdgeCortix
Flyte
Google AI Edge
HStreamDB
Lightly
MLReef
Unify AI
VLLM
Voxel51
Voyager SDK
Yamak.ai
Yandex DataSphere
ZenML

Integrations

AWS Elastic Fabric Adapter (EFA)
Akira AI
Amazon EC2 P4 Instances
Cameralyze
Cleanlab
Database Mart
EdgeCortix
Flyte
Google AI Edge
HStreamDB
Lightly
MLReef
Unify AI
VLLM
Voxel51
Voyager SDK
Yamak.ai
Yandex DataSphere
ZenML
Claim ConvNetJS and update features and information
Claim ConvNetJS and update features and information
Claim PyTorch and update features and information
Claim PyTorch and update features and information