ColBERTFuture Data Systems
|
RankLLMCastorini
|
|||||
Related Products
|
||||||
About
ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds. It relies on fine-grained contextual late interaction: it encodes each passage into a matrix of token-level embeddings. At search time, it embeds every query into another matrix and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators. These rich interactions allow ColBERT to surpass the quality of single-vector representation models while scaling efficiently to large corpora. The toolkit includes components for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. ColBERT integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts.
|
About
RankLLM is a Python toolkit for reproducible information retrieval research using rerankers, with a focus on listwise reranking. It offers a suite of rerankers, pointwise models like MonoT5, pairwise models like DuoT5, and listwise models compatible with vLLM, SGLang, or TensorRT-LLM. Additionally, it supports RankGPT and RankGemini variants, which are proprietary listwise rerankers. It includes modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. RankLLM integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Academic researchers and developers seeking a tool for implementing and evaluating listwise reranking with large language models
|
Audience
Academic researchers and developers seeking a solution offering tools for implementing and evaluating listwise reranking with large language models
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationFuture Data Systems
United States
github.com/stanford-futuredata/ColBERT
|
Company InformationCastorini
Canada
github.com/castorini/rank_llm/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
Gemini
Gemini Enterprise
Llama
Mistral AI
NVIDIA TensorRT
OpenAI
Python
Qwen
RankGPT
|
Integrations
Gemini
Gemini Enterprise
Llama
Mistral AI
NVIDIA TensorRT
OpenAI
Python
Qwen
RankGPT
|
|||||
|
|
|