ColBERTFuture Data Systems
|
Pinecone Rerank v0Pinecone
|
|||||
Related Products
|
||||||
About
ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds. It relies on fine-grained contextual late interaction: it encodes each passage into a matrix of token-level embeddings. At search time, it embeds every query into another matrix and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators. These rich interactions allow ColBERT to surpass the quality of single-vector representation models while scaling efficiently to large corpora. The toolkit includes components for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. ColBERT integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts.
|
About
Pinecone Rerank V0 is a cross-encoder model optimized for precision in reranking tasks, enhancing enterprise search and retrieval-augmented generation (RAG) systems. It processes queries and documents together to capture fine-grained relevance, assigning a relevance score from 0 to 1 for each query-document pair. The model's maximum context length is set to 512 tokens to preserve ranking quality. Evaluations on the BEIR benchmark demonstrated that Pinecone Rerank V0 achieved the highest average NDCG@10, outperforming other models on 6 out of 12 datasets. For instance, it showed up to a 60% boost on the Fever dataset compared to Google Semantic Ranker and over 40% on the Climate-Fever dataset relative to cohere-v3-multilingual or voyageai-rerank-2. The model is accessible through Pinecone Inference and is available to all users in public preview.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Academic researchers and developers seeking a tool for implementing and evaluating listwise reranking with large language models
|
Audience
AI developers looking for a tool to enhance the relevance and accuracy of search results in enterprise applications, particularly those leveraging RAG systems
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
$25 per month
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationFuture Data Systems
United States
github.com/stanford-futuredata/ColBERT
|
Company InformationPinecone
Founded: 2019
United States
www.pinecone.io/blog/pinecone-rerank-v0-announcement/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
Amazon Bedrock
Cloudera
Confluent
Databricks Data Intelligence Platform
Datavolo
Gathr.ai
Google Cloud Platform
Hugging Face
Instill
Jina AI
|
Integrations
Amazon Bedrock
Cloudera
Confluent
Databricks Data Intelligence Platform
Datavolo
Gathr.ai
Google Cloud Platform
Hugging Face
Instill
Jina AI
|
|||||
|
|
|