Nomic EmbedNomic
|
||||||
Related Products
|
||||||
About
BGE (BAAI General Embedding) is a comprehensive retrieval toolkit designed for search and Retrieval-Augmented Generation (RAG) applications. It offers inference, evaluation, and fine-tuning capabilities for embedding models and rerankers, facilitating the development of advanced information retrieval systems. The toolkit includes components such as embedders and rerankers, which can be integrated into RAG pipelines to enhance search relevance and accuracy. BGE supports various retrieval methods, including dense retrieval, multi-vector retrieval, and sparse retrieval, providing flexibility to handle different data types and retrieval scenarios. The models are available through platforms like Hugging Face, and the toolkit provides tutorials and APIs to assist users in implementing and customizing their retrieval systems. By leveraging BGE, developers can build robust and efficient search solutions tailored to their specific needs.
|
About
Nomic Embed is a suite of open source, high-performance embedding models designed for various applications, including multilingual text, multimodal content, and code. The ecosystem includes models like Nomic Embed Text v2, which utilizes a Mixture-of-Experts (MoE) architecture to support over 100 languages with efficient inference using 305M active parameters. Nomic Embed Text v1.5 offers variable embedding dimensions (64 to 768) through Matryoshka Representation Learning, enabling developers to balance performance and storage needs. For multimodal applications, Nomic Embed Vision v1.5 aligns with the text models to provide a unified latent space for text and image data, facilitating seamless multimodal search. Additionally, Nomic Embed Code delivers state-of-the-art performance on code embedding tasks across multiple programming languages.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Data scientists and AI researchers looking for a tool to develop sophisticated retrieval systems, offering tools for embedding, reranking, and fine-tuning to enhance search and RAG applications
|
Audience
Machine learning engineers and developers seeking a solution offering embedding models for multilingual text, multimodal content, and code applications
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationBGE
Founded: 2025
United States
bge-model.com/Introduction/index.html
|
Company InformationNomic
United States
www.nomic.ai/embed
|
|||||
Alternatives |
Alternatives |
|||||
|
|
||||||
|
|
|
|||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
Baseten
Go
Hugging Face
Java
JavaScript
Nebius Token Factory
PHP
Python
Ruby
|
Integrations
Baseten
Go
Hugging Face
Java
JavaScript
Nebius Token Factory
PHP
Python
Ruby
|
|||||
|
|
|