Amazon SageMaker Studio LabAmazon
|
||||||
Related Products
|
||||||
About
Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
|
About
ClearML is the leading open source MLOps and AI platform that helps data science, ML engineering, and DevOps teams easily develop, orchestrate, and automate ML workflows at scale. Our frictionless, unified, end-to-end MLOps suite enables users and customers to focus on developing their ML code and automation. ClearML is used by more than 1,300 enterprise customers to develop a highly repeatable process for their end-to-end AI model lifecycle, from product feature exploration to model deployment and monitoring in production. Use all of our modules for a complete ecosystem or plug in and play with the tools you have. ClearML is trusted by more than 150,000 forward-thinking Data Scientists, Data Engineers, ML Engineers, DevOps, Product Managers and business unit decision makers at leading Fortune 500 companies, enterprises, academia, and innovative start-ups worldwide within industries such as gaming, biotech , defense, healthcare, CPG, retail, financial services, among others.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Companies looking for a tool to learn and experiment with ML using a no-setup, free development environment
|
Audience
Developers searching for machine learning, MLOPs, LLMOps and Generative AI tools
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
$15
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAmazon
Founded: 1994
United States
aws.amazon.com/sagemaker/studio-lab/
|
Company InformationClearML
Founded: 2016
Israel
clear.ml/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
||||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Machine Learning Features
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
DevOps Features
Approval Workflow
Dashboard
KPIs
Policy Management
Portfolio Management
Prioritization
Release Management
Timeline Management
Troubleshooting Reports
Virtual Machine Features
Backup Management
Graphical User Interface
Remote Control
VDI
Virtual Machine Encryption
Virtual Machine Migration
Virtual Machine Monitoring
Virtual Server
|
||||||
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Conda
Git
GitHub
Jupyter Notebook
Kubernetes
PyTorch
Python
TensorFlow
|
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Conda
Git
GitHub
Jupyter Notebook
Kubernetes
PyTorch
Python
TensorFlow
|
|||||
|
|
|