+
+

Related Products

  • Google Cloud BigQuery
    1,934 Ratings
    Visit Website
  • Vertex AI
    783 Ratings
    Visit Website
  • Google AI Studio
    11 Ratings
    Visit Website
  • Sage Intacct
    7,861 Ratings
    Visit Website
  • Fraud.net
    56 Ratings
    Visit Website
  • Qloo
    23 Ratings
    Visit Website
  • Teradata VantageCloud
    992 Ratings
    Visit Website
  • Predict360
    18 Ratings
    Visit Website
  • Boozang
    15 Ratings
    Visit Website
  • RunPod
    205 Ratings
    Visit Website

About

Amazon SageMaker Canvas expands access to machine learning (ML) by providing business analysts with a visual interface that allows them to generate accurate ML predictions on their own, without requiring any ML experience or having to write a single line of code. Visual point-and-click interface to connect, prepare, analyze, and explore data for building ML models and generating accurate predictions. Automatically build ML models to run what-if analysis and generate single or bulk predictions with a few clicks. Boost collaboration between business analysts and data scientists by sharing, reviewing, and updating ML models across tools. Import ML models from anywhere and generate predictions directly in Amazon SageMaker Canvas. With Amazon SageMaker Canvas, you can import data from disparate sources, select values you want to predict, automatically prepare and explore data, and quickly and more easily build ML models. You can then analyze models and generate accurate predictions.

About

Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Audience

Companies requiring a solution to generate accurate ML predictions with no code required

Audience

Enterprises seeking a solution to store, share, and manage ML model features for training

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

API

Offers API

API

Offers API

Screenshots and Videos

Screenshots and Videos

Pricing

No information available.
Free Version
Free Trial

Pricing

No information available.
Free Version
Free Trial

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Company Information

Amazon
Founded: 1994
United States
aws.amazon.com/sagemaker/canvas/

Company Information

Amazon
Founded: 1994
United States
aws.amazon.com/sagemaker/feature-store/

Alternatives

Alternatives

Categories

Categories

Integrations

Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
AWS Glue
AWS Lake Formation
Amazon Athena
Amazon Kinesis
Amazon Redshift
Amazon S3
Amazon SageMaker Data Wrangler
Apache Spark
Databricks Data Intelligence Platform
Snowflake

Integrations

Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
AWS Glue
AWS Lake Formation
Amazon Athena
Amazon Kinesis
Amazon Redshift
Amazon S3
Amazon SageMaker Data Wrangler
Apache Spark
Databricks Data Intelligence Platform
Snowflake
Claim Amazon SageMaker Canvas and update features and information
Claim Amazon SageMaker Canvas and update features and information
Claim Amazon SageMaker Feature Store and update features and information
Claim Amazon SageMaker Feature Store and update features and information