Compare the Top Columnar Databases for Windows as of July 2025

What are Columnar Databases for Windows?

Columnar databases, also known as column-oriented databases or column-store databases, are a type of database that store data in columns instead of rows. Columnar databases have some advantages over traditional row databases including speed and efficiency. Compare and read user reviews of the best Columnar Databases for Windows currently available using the table below. This list is updated regularly.

  • 1
    Sadas Engine
    Sadas Engine is the fastest Columnar Database Management System both in Cloud and On Premise. Turn Data into Information with the fastest columnar Database Management System able to perform 100 times faster than transactional DBMSs and able to carry out searches on huge quantities of data over a period even longer than 10 years. Every day we work to ensure impeccable service and appropriate solutions to enhance the activities of your specific business. SADAS srl, a company of the AS Group , is dedicated to the development of Business Intelligence solutions, data analysis applications and DWH tools, relying on cutting-edge technology. The company operates in many sectors: banking, insurance, leasing, commercial, media and telecommunications, and in the public sector. Innovative software solutions for daily management needs and decision-making processes, in any sector
  • 2
    Apache Cassandra

    Apache Cassandra

    Apache Software Foundation

    The Apache Cassandra database is the right choice when you need scalability and high availability without compromising performance. Linear scalability and proven fault-tolerance on commodity hardware or cloud infrastructure make it the perfect platform for mission-critical data. Cassandra's support for replicating across multiple datacenters is best-in-class, providing lower latency for your users and the peace of mind of knowing that you can survive regional outages.
  • 3
    Querona

    Querona

    YouNeedIT

    We make BI & Big Data analytics work easier and faster. Our goal is to empower business users and make always-busy business and heavily loaded BI specialists less dependent on each other when solving data-driven business problems. If you have ever experienced a lack of data you needed, time to consuming report generation or long queue to your BI expert, consider Querona. Querona uses a built-in Big Data engine to handle growing data volumes. Repeatable queries can be cached or calculated in advance. Optimization needs less effort as Querona automatically suggests query improvements. Querona empowers business analysts and data scientists by putting self-service in their hands. They can easily discover and prototype data models, add new data sources, experiment with query optimization and dig in raw data. Less IT is needed. Now users can get live data no matter where it is stored. If databases are too busy to be queried live, Querona will cache the data.
  • 4
    Greenplum

    Greenplum

    Greenplum Database

    Greenplum Database® is an advanced, fully featured, open source data warehouse. It provides powerful and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database is powered by the world’s most advanced cost-based query optimizer delivering high analytical query performance on large data volumes. Greenplum Database® project is released under the Apache 2 license. We want to thank all our current community contributors and are interested in all new potential contributions. For the Greenplum Database community no contribution is too small, we encourage all types of contributions. An open-source massively parallel data platform for analytics, machine learning and AI. Rapidly create and deploy models for complex applications in cybersecurity, predictive maintenance, risk management, fraud detection, and many other areas. Experience the fully featured, integrated, open source analytics platform.
  • 5
    MonetDB

    MonetDB

    MonetDB

    Choose from a wide range of SQL features to realise your applications from pure analytics to hybrid transactional/analytical processing. When you're curious about what's in your data; when you want to work efficiently; when your deadline is closing: MonetDB returns query result in mere seconds or even less. When you want to (re)use your own code; when you need specialised functions: use the hooks to add your own user-defined functions in SQL, Python, R or C/C++. Join us and expand the MonetDB community spread over 130+ countries with students, teachers, researchers, start-ups, small businesses and multinational enterprises. Join the leading Database in Analytical Jobs and surf the innovation! Don’t lose time with complex installation, use MonetDB’s easy setup to get your DBMS up and running quickly.
  • 6
    Apache Kudu

    Apache Kudu

    The Apache Software Foundation

    A Kudu cluster stores tables that look just like tables you're used to from relational (SQL) databases. A table can be as simple as a binary key and value, or as complex as a few hundred different strongly-typed attributes. Just like SQL, every table has a primary key made up of one or more columns. This might be a single column like a unique user identifier, or a compound key such as a (host, metric, timestamp) tuple for a machine time-series database. Rows can be efficiently read, updated, or deleted by their primary key. Kudu's simple data model makes it a breeze to port legacy applications or build new ones, no need to worry about how to encode your data into binary blobs or make sense of a huge database full of hard-to-interpret JSON. Tables are self-describing, so you can use standard tools like SQL engines or Spark to analyze your data. Kudu's APIs are designed to be easy to use.
  • 7
    Apache Parquet

    Apache Parquet

    The Apache Software Foundation

    We created Parquet to make the advantages of compressed, efficient columnar data representation available to any project in the Hadoop ecosystem. Parquet is built from the ground up with complex nested data structures in mind, and uses the record shredding and assembly algorithm described in the Dremel paper. We believe this approach is superior to simple flattening of nested namespaces. Parquet is built to support very efficient compression and encoding schemes. Multiple projects have demonstrated the performance impact of applying the right compression and encoding scheme to the data. Parquet allows compression schemes to be specified on a per-column level, and is future-proofed to allow adding more encodings as they are invented and implemented. Parquet is built to be used by anyone. The Hadoop ecosystem is rich with data processing frameworks, and we are not interested in playing favorites.
  • 8
    qikkDB

    qikkDB

    qikkDB

    QikkDB is a GPU accelerated columnar database, delivering stellar performance for complex polygon operations and big data analytics. When you count your data in billions and want to see real-time results you need qikkDB. We support Windows and Linux operating systems. We use Google Tests as the testing framework. There are hundreds of unit tests and tens of integration tests in the project. For development on Windows, Microsoft Visual Studio 2019 is recommended, and its dependencies are CUDA version 10.2 minimal, CMake 3.15 or newer, vcpkg, boost. For development on Linux, the dependencies are CUDA version 10.2 minimal, CMake 3.15 or newer, and boost. This project is licensed under the Apache License, Version 2.0. You can use an installation script or dockerfile to install qikkDB.
  • 9
    MariaDB

    MariaDB

    MariaDB

    MariaDB Platform is a complete enterprise open source database solution. It has the versatility to support transactional, analytical and hybrid workloads as well as relational, JSON and hybrid data models. And it has the scalability to grow from standalone databases and data warehouses to fully distributed SQL for executing millions of transactions per second and performing interactive, ad hoc analytics on billions of rows. MariaDB can be deployed on prem on commodity hardware, is available on all major public clouds and through MariaDB SkySQL as a fully managed cloud database. To learn more, visit mariadb.com.
  • Previous
  • You're on page 1
  • Next