Best Big Data Platforms for Progress DataDirect

Compare the Top Big Data Platforms that integrate with Progress DataDirect as of August 2025

This a list of Big Data platforms that integrate with Progress DataDirect. Use the filters on the left to add additional filters for products that have integrations with Progress DataDirect. View the products that work with Progress DataDirect in the table below.

What are Big Data Platforms for Progress DataDirect?

Big data platforms are systems that provide the infrastructure and tools needed to store, manage, process, and analyze large volumes of structured and unstructured data. These platforms typically offer scalable storage solutions, high-performance computing capabilities, and advanced analytics tools to help organizations extract insights from massive datasets. Big data platforms often support technologies such as distributed computing, machine learning, and real-time data processing, allowing businesses to leverage their data for decision-making, predictive analytics, and process optimization. By using these platforms, organizations can handle complex datasets efficiently, uncover hidden patterns, and drive data-driven innovation. Compare and read user reviews of the best Big Data platforms for Progress DataDirect currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is designed to handle and analyze big data, making it an ideal tool for businesses working with massive datasets. Whether you are processing gigabytes or petabytes, BigQuery scales automatically and delivers high-performance queries, making it highly efficient. With BigQuery, organizations can analyze data at unprecedented speed, helping them stay ahead in fast-moving industries. New customers can leverage the $300 in free credits to explore BigQuery's big data capabilities, gaining practical experience in managing and analyzing large volumes of information. The platform’s serverless architecture ensures that users never have to worry about scaling issues, making big data management simpler than ever.
    Starting Price: Free ($300 in free credits)
    View Platform
    Visit Website
  • 2
    MongoDB

    MongoDB

    MongoDB

    MongoDB is a general purpose, document-based, distributed database built for modern application developers and for the cloud era. No database is more productive to use. Ship and iterate 3–5x faster with our flexible document data model and a unified query interface for any use case. Whether it’s your first customer or 20 million users around the world, meet your performance SLAs in any environment. Easily ensure high availability, protect data integrity, and meet the security and compliance standards for your mission-critical workloads. An integrated suite of cloud database services that allow you to address a wide variety of use cases, from transactional to analytical, from search to data visualizations. Launch secure mobile apps with native, edge-to-cloud sync and automatic conflict resolution. Run MongoDB anywhere, from your laptop to your data center.
    Leader badge
    Starting Price: Free
  • 3
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 4
    Teradata VantageCloud
    Teradata VantageCloud is a comprehensive cloud-based analytics and data platform that allows businesses to unlock the full potential of their data with unparalleled speed, scalability, and operational flexibility. Engineered for enterprise-grade performance, VantageCloud supports seamless AI and machine learning integration, enabling organizations to generate real-time insights and make informed decisions faster. It offers deployment flexibility across public clouds, hybrid environments, or on-premise setups, making it highly adaptable to existing infrastructures. With features like unified data architecture, intelligent governance, and optimized cost-efficiency, VantageCloud helps businesses reduce complexity, drive innovation, and maintain a competitive edge in today’s data-driven world.
  • 5
    SAP HANA
    SAP HANA in-memory database is for transactional and analytical workloads with any data type — on a single data copy. It breaks down the transactional and analytical silos in organizations, for quick decision-making, on premise and in the cloud. Innovate without boundaries on a database management system, where you can develop intelligent and live solutions for quick decision-making on a single data copy. And with advanced analytics, you can support next-generation transactional processing. Build data solutions with cloud-native scalability, speed, and performance. With the SAP HANA Cloud database, you can gain trusted, business-ready information from a single solution, while enabling security, privacy, and anonymization with proven enterprise reliability. An intelligent enterprise runs on insight from data – and more than ever, this insight must be delivered in real time.
  • 6
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 7
    Amazon EMR
    Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using open-source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-premises solutions and over 3x faster than standard Apache Spark. For short-running jobs, you can spin up and spin down clusters and pay per second for the instances used. For long-running workloads, you can create highly available clusters that automatically scale to meet demand. If you have existing on-premises deployments of open-source tools such as Apache Spark and Apache Hive, you can also run EMR clusters on AWS Outposts. Analyze data using open-source ML frameworks such as Apache Spark MLlib, TensorFlow, and Apache MXNet. Connect to Amazon SageMaker Studio for large-scale model training, analysis, and reporting.
  • 8
    Azure Data Lake Storage
    Eliminate data silos with a single storage platform. Optimize costs with tiered storage and policy management. Authenticate data using Azure Active Directory (Azure AD) and role-based access control (RBAC). And help protect data with security features like encryption at rest and advanced threat protection. Highly secure with flexible mechanisms for protection across data access, encryption, and network-level control. Single storage platform for ingestion, processing, and visualization that supports the most common analytics frameworks. Cost optimization via independent scaling of storage and compute, lifecycle policy management, and object-level tiering. Meet any capacity requirements and manage data with ease, with the Azure global infrastructure. Run large-scale analytics queries at consistently high performance.
  • 9
    HPE Ezmeral Data Fabric

    HPE Ezmeral Data Fabric

    Hewlett Packard Enterprise

    Access HPE Ezmeral Data Fabric Software as a fully managed service. Register now for a 300GB instance to try out the latest features and capabilities. Increasingly enterprise data is being distributed across a growing number of locations while at the same time, the demand for insights continues to grow as users expect richer, high-quality data insights. Hybrid cloud solutions offer the best outcomes in terms of cost, data placement, workload control, and user experience. The upside of hybrid is the ability to better match applications with the appropriate services across the application lifecycle. The downside of hybrid is that it adds a new dimension of complexity such as limited data visibility, the need to use multiple analytic formats, and the potential for organizational risk and increased costs.
  • 10
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • Previous
  • You're on page 1
  • Next