Best Big Data Platforms for ActiveBatch Workload Automation

Compare the Top Big Data Platforms that integrate with ActiveBatch Workload Automation as of October 2025

This a list of Big Data platforms that integrate with ActiveBatch Workload Automation. Use the filters on the left to add additional filters for products that have integrations with ActiveBatch Workload Automation. View the products that work with ActiveBatch Workload Automation in the table below.

What are Big Data Platforms for ActiveBatch Workload Automation?

Big data platforms are systems that provide the infrastructure and tools needed to store, manage, process, and analyze large volumes of structured and unstructured data. These platforms typically offer scalable storage solutions, high-performance computing capabilities, and advanced analytics tools to help organizations extract insights from massive datasets. Big data platforms often support technologies such as distributed computing, machine learning, and real-time data processing, allowing businesses to leverage their data for decision-making, predictive analytics, and process optimization. By using these platforms, organizations can handle complex datasets efficiently, uncover hidden patterns, and drive data-driven innovation. Compare and read user reviews of the best Big Data platforms for ActiveBatch Workload Automation currently available using the table below. This list is updated regularly.

  • 1
    Teradata VantageCloud
    Teradata VantageCloud: Scalable Cloud Analytics and AI Platform VantageCloud is Teradata’s enterprise cloud platform built to manage the largest and most complex data ecosystems. It brings together data from across the organization, enabling advanced analytics, seamless AI deployment, and real-time insights — all within a single, scalable environment. With support for multi-cloud and hybrid deployments, VantageCloud allows businesses to manage data across AWS, Azure, Google Cloud, and on-premises systems with ease. Its open architecture ensures compatibility with modern tools and industry standards, reducing complexity and avoiding vendor lock-in. By delivering trusted AI, harmonized data, and high-performance analytics, VantageCloud equips organizations to uncover new opportunities, accelerate innovation, and make confident, data-driven decisions at scale.
    View Platform
    Visit Website
  • 2
    Microsoft Azure
    Microsoft's Azure is a cloud computing platform that allows for rapid and secure application development, testing and management. Azure. Invent with purpose. Turn ideas into solutions with more than 100 services to build, deploy, and manage applications—in the cloud, on-premises, and at the edge—using the tools and frameworks of your choice. Continuous innovation from Microsoft supports your development today, and your product visions for tomorrow. With a commitment to open source, and support for all languages and frameworks, build how you want, and deploy where you want to. On-premises, in the cloud, and at the edge—we’ll meet you where you are. Integrate and manage your environments with services designed for hybrid cloud. Get security from the ground up, backed by a team of experts, and proactive compliance trusted by enterprises, governments, and startups. The cloud you can trust, with the numbers to prove it.
  • 3
    IBM Cognos Analytics
    IBM Cognos Analytics acts as your trusted co-pilot for business with the aim of making you smarter, faster, and more confident in your data-driven decisions. IBM Cognos Analytics gives every user — whether data scientist, business analyst or non-IT specialist — more power to perform relevant analysis in a way that ties back to organizational objectives. It shortens each user’s journey from simple to sophisticated analytics, allowing them to harness data to explore the unknown, identify new relationships, get a deeper understanding of outcomes and challenge the status quo. Visualize, analyze and share actionable insights about your data with anyone in your organization with IBM Cognos Analytics.
  • 4
    Hadoop

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures. A wide variety of companies and organizations use Hadoop for both research and production. Users are encouraged to add themselves to the Hadoop PoweredBy wiki page. Apache Hadoop 3.3.4 incorporates a number of significant enhancements over the previous major release line (hadoop-3.2).
  • 5
    IBM DataStage
    Accelerate AI innovation with cloud-native data integration on IBM Cloud Pak for data. AI-powered data integration, anywhere. Your AI and analytics are only as good as the data that fuels them. With a modern container-based architecture, IBM® DataStage® for IBM Cloud Pak® for Data delivers that high-quality data. It combines industry-leading data integration with DataOps, governance and analytics on a single data and AI platform. Automation accelerates administrative tasks to help reduce TCO. AI-based design accelerators and out-of-the-box integration with DataOps and data science services speed AI innovation. Parallelism and multicloud integration let you deliver trusted data at scale across hybrid or multicloud environments. Manage the data and analytics lifecycle on the IBM Cloud Pak for Data platform. Services include data science, event messaging, data virtualization and data warehousing. Parallel engine and automated load balancing.
  • Previous
  • You're on page 1
  • Next