Compare the Top AI Infrastructure Platforms in Australia as of October 2025 - Page 4

  • 1
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 2
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 3
    AWS Inferentia
    AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia.
  • 4
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 5
    Amazon SageMaker Edge
    The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console.
  • 6
    Amazon SageMaker Clarify
    Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model.
  • 7
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 8
    Amazon SageMaker Autopilot
    Amazon SageMaker Autopilot eliminates the heavy lifting of building ML models. You simply provide a tabular dataset and select the target column to predict, and SageMaker Autopilot will automatically explore different solutions to find the best model. You then can directly deploy the model to production with just one click or iterate on the recommended solutions to further improve the model quality. You can use Amazon SageMaker Autopilot even when you have missing data. SageMaker Autopilot automatically fills in the missing data, provides statistical insights about columns in your dataset, and automatically extracts information from non-numeric columns, such as date and time information from timestamps.
  • 9
    Amazon SageMaker Model Deployment
    Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
  • 10
    MosaicML

    MosaicML

    MosaicML

    Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved.
  • 11
    IBM watsonx
    IBM watsonx is a powerful suite of AI products designed to accelerate the adoption of generative AI across business workflows. With tools like watsonx.ai for AI application development, watsonx.data for data management, and watsonx.governance for regulatory compliance, businesses can create, manage, and deploy AI solutions seamlessly. The platform provides an integrated developer studio to foster collaboration and optimize the entire AI lifecycle. IBM watsonx also offers tools for automating processes, boosting productivity with AI assistants and agents, and supporting responsible AI through governance and risk management. Trusted by industries worldwide, IBM watsonx enables businesses to unlock the full potential of AI to drive innovation and enhance decision-making.
  • 12
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 13
    AWS Trainium

    AWS Trainium

    Amazon Web Services

    AWS Trainium is the second-generation Machine Learning (ML) accelerator that AWS purpose built for deep learning training of 100B+ parameter models. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance deploys up to 16 AWS Trainium accelerators to deliver a high-performance, low-cost solution for deep learning (DL) training in the cloud. Although the use of deep learning is accelerating, many development teams are limited by fixed budgets, which puts a cap on the scope and frequency of training needed to improve their models and applications. Trainium-based EC2 Trn1 instances solve this challenge by delivering faster time to train while offering up to 50% cost-to-train savings over comparable Amazon EC2 instances.
  • 14
    HPE InfoSight

    HPE InfoSight

    Hewlett Packard Enterprise

    You won’t spend any more days off searching for a root cause deep in your hybrid environment. Every second, HPE InfoSight collects and analyzes data from more than 100,000 systems worldwide, and uses that intelligence to make every system smarter and more self-sufficient. HPE InfoSight predicts and automatically resolves 86% of customer issues. Achieving always-on, always-fast apps requires greater visibility, intelligent performance recommendations, and more predictive autonomous operations from infrastructure. HPE InfoSight App Insights is your answer. Go beyond traditional performance monitoring to quickly locate, diagnose, and even predict problems across apps and workloads with the power of AI. HPE InfoSight leverages the power of AI to make autonomous infrastructure a reality.
  • 15
    SynapseAI

    SynapseAI

    Habana Labs

    Like our accelerator hardware, was purpose-designed to optimize deep learning performance, efficiency, and most importantly for developers, ease of use. With support for popular frameworks and models, the goal of SynapseAI is to facilitate ease and speed for developers, using the code and tools they use regularly and prefer. In essence, SynapseAI and its many tools and support are designed to meet deep learning developers where you are — enabling you to develop what and how you want. Habana-based deep learning processors, preserve software investments, and make it easy to build new models— for both training and deployment of the numerous and growing models defining deep learning, generative AI and large language models.
  • 16
    Katonic

    Katonic

    Katonic

    Build powerful enterprise-grade AI applications in minutes, without any coding on the Katonic generative AI platform. Boost the productivity of your employees and take your customer experience to the next level with the power of generative AI. Build AI-powered chatbots and digital assistants that can access and process information from documents or dynamic content refreshed automatically through pre-built connectors. Identify and extract essential information from unstructured text or surface insights in specialized domain areas without having to create any templates. Transform dense text into a personalized executive overview, capturing key points from financial reports, meeting transcriptions, and more. Build recommendation systems that can suggest products, services, or content to users based on their past behavior and preferences.
  • 17
    Vast.ai

    Vast.ai

    Vast.ai

    Vast.ai is the market leader in low-cost cloud GPU rental. Use one simple interface to save 5-6X on GPU compute. Use on-demand rentals for convenience and consistent pricing. Or save a further 50% or more with interruptible instances using spot auction based pricing. Vast has an array of providers that offer different levels of security: from hobbyists up to Tier-4 data centers. Vast.ai helps you find the best pricing for the level of security and reliability you need. Use our command line interface to search the entire marketplace for offers while utilizing scriptable filters and sort options. Launch instances quickly right from the CLI and easily automate your deployment. Save an additional 50% or more by using interruptible instances and auction pricing. The highest bidding instances run; other conflicting instances are stopped.
    Starting Price: $0.20 per hour
  • 18
    DataCrunch

    DataCrunch

    DataCrunch

    Up to 8 NVidia® H100 80GB GPUs, each containing 16896 CUDA cores and 528 Tensor Cores. This is the current flagship silicon from NVidia®, unbeaten in raw performance for AI operations. We deploy the SXM5 NVLINK module, which offers a memory bandwidth of 2.6 Gbps and up to 900GB/s P2P bandwidth. Fourth generation AMD Genoa, up to 384 threads with a boost clock of 3.7GHz. We only use the SXM4 'for NVLINK' module, which offers a memory bandwidth of over 2TB/s and Up to 600GB/s P2P bandwidth. Second generation AMD EPYC Rome, up to 192 threads with a boost clock of 3.3GHz. The name 8A100.176V is composed as follows: 8x RTX A100, 176 CPU core threads & virtualized. Despite having less tensor cores than the V100, it is able to process tensor operations faster due to a different architecture. Second generation AMD EPYC Rome, up to 96 threads with a boost clock of 3.35GHz.
    Starting Price: $3.01 per hour
  • 19
    aiXplain

    aiXplain

    aiXplain

    We offer a unified set of world class tools and assets for seamless conversion of ideas into production-ready AI solutions. Build and deploy end-to-end custom Generative AI solutions on our unified platform, skipping the hassle of tool fragmentation and platform-switching. Launch your next AI solution through a single API endpoint. Creating, maintaining, and improving AI systems has never been this easy. Discover is aiXplain’s marketplace for models and datasets from various suppliers. Subscribe to models and datasets to use them with aiXplain no-code/low-code tools or through the SDK in your own code.
  • 20
    Together AI

    Together AI

    Together AI

    Whether prompt engineering, fine-tuning, or training, we are ready to meet your business demands. Easily integrate your new model into your production application using the Together Inference API. With the fastest performance available and elastic scaling, Together AI is built to scale with your needs as you grow. Inspect how models are trained and what data is used to increase accuracy and minimize risks. You own the model you fine-tune, not your cloud provider. Change providers for whatever reason, including price changes. Maintain complete data privacy by storing data locally or in our secure cloud.
    Starting Price: $0.0001 per 1k tokens
  • 21
    Neysa Nebula
    Nebula allows you to deploy and scale your AI projects quickly, easily and cost-efficiently2 on highly robust, on-demand GPU infrastructure. Train and infer your models securely and easily on the Nebula cloud powered by the latest on-demand Nvidia GPUs and create and manage your containerized workloads through Nebula’s user-friendly orchestration layer. Access Nebula’s MLOps and low-code/no-code engines to build and deploy AI use cases for business teams and to deploy AI-powered applications swiftly and seamlessly with little to no coding. Choose between the Nebula containerized AI cloud, your on-prem environment, or any cloud of your choice. Build and scale AI-enabled business use-cases within a matter of weeks, not months, with the Nebula Unify platform.
    Starting Price: $0.12 per hour
  • 22
    Context Data

    Context Data

    Context Data

    Context Data is an enterprise data infrastructure built to accelerate the development of data pipelines for Generative AI applications. The platform automates the process of setting up internal data processing and transformation flows using an easy-to-use connectivity framework where developers and enterprises can quickly connect to all of their internal data sources, embedding models and vector database targets without having to set up expensive infrastructure or engineers. The platform also allows developers to schedule recurring data flows for refreshed and up-to-date data.
    Starting Price: $99 per month
  • 23
    Motific.ai

    Motific.ai

    Outshift by Cisco

    Accelerate your GenAI adoption journey. Configure GenAI assistants powered by your organization’s data with just a few clicks. Roll out GenAI assistants with guardrails for security, trust, compliance, and cost management. Discover how your teams are leveraging AI assistants with data-driven insights. Uncover opportunities to maximize value. Power your GenAI apps with top Large Language Models (LLMs). Seamlessly connect with top GenAI model providers such as Google, Amazon, Mistral, and Azure. Employ safe GenAI on your marcom site that answers press, analysts, and customer questions. Quickly create and deploy GenAI assistants on web portals that offer swift, precise, and policy-controlled responses to questions, using the information in your public content. Leverage safe GenAI to offer swift, correct answers to legal policy questions from your employees.
  • 24
    Runyour AI

    Runyour AI

    Runyour AI

    From renting machines for AI research to specialized templates and servers, Runyour AI provides the optimal environment for artificial intelligence research. Runyour AI is an AI cloud service that provides easy access to GPU resources and research environments for artificial intelligence research. You can rent various high-performance GPU machines and environments at a reasonable price. Additionally, you can register your own GPUs to generate revenue. Transparent billing policy where you pay for charging points used through minute-by-minute real-time monitoring. From casual hobbyists to seasoned researchers, we provide specialized GPUs for AI projects, catering to a range of needs. An AI project environment that is easy and convenient for even first-time users. By utilizing Runyour AI's GPU machines, you can kickstart your AI research with minimal setup. Designed for quick access to GPUs, it provides a seamless research environment for machine learning and AI development.
  • 25
    Lemma

    Lemma

    Thread AI

    Prototype and production event-driven, distributed workflows that span AI models, APIs, databases, ETL systems, and applications, all in one platform. Enable a faster time to value for your organization while cutting down operational overhead and infrastructure complexity. Focus on investing in proprietary logic and accelerating feature delivery without wasting time on platform and architecture decisions that slow development and execution. Revolutionize emergency response with real-time transcription, keyword and keyphrase identification, and integrated connectivity to external systems. Connect the physical and digital worlds and optimize maintenance operations by monitoring sensors, generating a triage plan for operator review upon an alert, and creating service tickets in your work order platform. Apply past experience in new ways to current problems by generating responses to incoming security assessments based on company-specific data across various platforms.
  • 26
    Burncloud

    Burncloud

    Burncloud

    Burncloud is a leading cloud computing service provider focused on delivering efficient, reliable, and secure GPU rental solutions for businesses. Our platform operates on a systemized model designed to meet the high-performance computing needs of various enterprises. Core Services Online GPU Rental Services: We offer a variety of GPU models for rent, including data center-grade devices and edge consumer-level computing equipment, to meet the diverse computational needs of businesses. Our best-selling products currently include: RTX 4070, RTX 3070 Ti, H100 PCIe, RTX 3090 Ti, RTX 3060, NVIDIA 4090, L40, RTX 3080 Ti, L40S, RTX 4090, RTX 3090, A10, H100 SXM, H100 NVL, A100 PCIe 80GB, and more. Compute Cluster Setup Services: Our technical team has extensive experience in IB networking technology and has successfully completed the setup of five 256-node clusters. For cluster setup services, please contact the customer service team on the Burncloud official website.
    Starting Price: $0.03/hour
  • 27
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 28
    Pipeshift

    Pipeshift

    Pipeshift

    Pipeshift is a modular orchestration platform designed to facilitate the building, deployment, and scaling of open source AI components, including embeddings, vector databases, large language models, vision models, and audio models, across any cloud environment or on-premises infrastructure. The platform offers end-to-end orchestration, ensuring seamless integration and management of AI workloads, and is 100% cloud-agnostic, providing flexibility in deployment. With enterprise-grade security, Pipeshift addresses the needs of DevOps and MLOps teams aiming to establish production pipelines in-house, moving beyond experimental API providers that may lack privacy considerations. Key features include an enterprise MLOps console for managing various AI workloads such as fine-tuning, distillation, and deployment; multi-cloud orchestration with built-in auto-scalers, load balancers, and schedulers for AI models; and Kubernetes cluster management.
  • 29
    Krutrim Cloud
    Ola Krutrim is an AI-driven platform offering a comprehensive suite of services designed to advance artificial intelligence applications across various sectors. Their offerings include scalable cloud infrastructure, AI model deployment, and India's first domestically designed AI chips. The platform supports AI workloads with GPU acceleration, enabling efficient training and inference processes. Additionally, Ola Krutrim provides AI-enhanced mapping solutions, seamless language translation services, and AI-powered customer support chatbots. Our AI studio allows users to deploy cutting-edge AI models effortlessly, while the Language Hub offers translation, transliteration, and speech-to-text conversion capabilities. Ola Krutrim's mission is to empower India's 1.4 billion+ consumers, developers, entrepreneurs, and enterprises by putting the power of AI in their hands.
  • 30
    Crusoe

    Crusoe

    Crusoe

    Crusoe provides a cloud infrastructure specifically designed for AI workloads, featuring state-of-the-art GPU technology and enterprise-grade data centers. The platform offers AI-optimized computing, featuring high-density racks and direct liquid-to-chip cooling for superior performance. Crusoe’s system ensures reliable and scalable AI solutions with automated node swapping, advanced monitoring, and a customer success team that supports businesses in deploying production AI workloads. Additionally, Crusoe prioritizes sustainability by sourcing clean, renewable energy, providing cost-effective services at competitive rates.