Compare the Top AI Fine-Tuning Platforms that integrate with Mistral AI as of November 2025

This a list of AI Fine-Tuning platforms that integrate with Mistral AI. Use the filters on the left to add additional filters for products that have integrations with Mistral AI. View the products that work with Mistral AI in the table below.

What are AI Fine-Tuning Platforms for Mistral AI?

AI fine-tuning platforms are tools used to improve the performance of artificial intelligence models. These platforms provide a framework for training and optimizing AI algorithms, allowing them to better understand and respond to data. They offer a variety of features such as automated hyperparameter tuning and data augmentation techniques. Users can also visualize the training process and monitor the model's accuracy over time. Overall, these platforms aim to streamline the process of fine-tuning AI models for various applications and industries. Compare and read user reviews of the best AI Fine-Tuning platforms for Mistral AI currently available using the table below. This list is updated regularly.

  • 1
    Amazon Bedrock
    Amazon Bedrock is a fully managed service that simplifies building and scaling generative AI applications by providing access to a variety of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself. Through a single API, developers can experiment with these models, customize them using techniques like fine-tuning and Retrieval Augmented Generation (RAG), and create agents that interact with enterprise systems and data sources. As a serverless platform, Amazon Bedrock eliminates the need for infrastructure management, allowing seamless integration of generative AI capabilities into applications with a focus on security, privacy, and responsible AI practices.
    View Platform
    Visit Website
  • 2
    LM-Kit.NET
    LM-Kit.NET lets .NET developers fine-tune large language models with parameters like LoraAlpha, LoraRank, AdamAlpha, and AdamBeta1, combining efficient optimizers and dynamic sample batching for rapid convergence; automated quantization compresses models into lower-precision formats that speed up inference on resource-constrained devices without losing accuracy; seamless LoRA adapter merging adds new skills in minutes instead of full retraining, and clear APIs, guides, and on-device processing keep the entire optimization workflow secure and easy inside your existing codebase.
    Leader badge
    Starting Price: Free (Community) or $1000/year
    Partner badge
    View Platform
    Visit Website
  • 3
    RunPod

    RunPod

    RunPod

    RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure.
    Starting Price: $0.40 per hour
    View Platform
    Visit Website
  • 4
    StackAI

    StackAI

    StackAI

    StackAI is an enterprise AI automation platform to build end-to-end internal tools and processes with AI agents in a fully compliant and secure way. Designed for large organizations, it enables teams to automate complex workflows across operations, compliance, finance, IT, and support without heavy engineering. With StackAI you can: • Connect knowledge bases (SharePoint, Confluence, Notion, Google Drive, databases) with versioning, citations, and access controls. • Deploy AI agents as chat assistants, advanced forms, or APIs integrated into Slack, Teams, Salesforce, HubSpot, or ServiceNow. • Govern usage with enterprise security: SSO (Okta, Azure AD, Google), RBAC, audit logs, PII masking, data residency, and cost controls. • Route across OpenAI, Anthropic, Google, or local LLMs with guardrails, evaluations, and testing. • Start fast with templates for Contract Analyzer, Support Desk, RFP Response, Investment Memo Generator, and more.
    Starting Price: $0
  • 5
    ReByte

    ReByte

    RealChar.ai

    Action-based orchestration to build complex backend agents with multiple steps. Working for all LLMs, build fully customized UI for your agent without writing a single line of code, serving on your domain. Track every step of your agent, literally every step, to deal with the nondeterministic nature of LLMs. Build fine-grain access control over your application, data, and agent. Specialized fine-tuned model for accelerating software development. Automatically handle concurrency, rate limiting, and more.
    Starting Price: $10 per month
  • 6
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 7
    Airtrain

    Airtrain

    Airtrain

    Query and compare a large selection of open-source and proprietary models at once. Replace costly APIs with cheap custom AI models. Customize foundational models on your private data to adapt them to your particular use case. Small fine-tuned models can perform on par with GPT-4 and are up to 90% cheaper. Airtrain’s LLM-assisted scoring simplifies model grading using your task descriptions. Serve your custom models from the Airtrain API in the cloud or within your secure infrastructure. Evaluate and compare open-source and proprietary models across your entire dataset with custom properties. Airtrain’s powerful AI evaluators let you score models along arbitrary properties for a fully customized evaluation. Find out what model generates outputs compliant with the JSON schema required by your agents and applications. Your dataset gets scored across models with standalone metrics such as length, compression, coverage.
    Starting Price: Free
  • 8
    Unsloth

    Unsloth

    Unsloth

    Unsloth is an open source platform designed to accelerate and optimize the fine-tuning and training of Large Language Models (LLMs). It enables users to train custom models, such as ChatGPT, in just 24 hours instead of the typical 30 days, achieving speeds up to 30 times faster than Flash Attention 2 (FA2) while using 90% less memory. Unsloth supports both LoRA and QLoRA fine-tuning techniques, allowing for efficient customization of models like Mistral, Gemma, and Llama versions 1, 2, and 3. Unsloth's efficiency stems from manually deriving computationally intensive mathematical steps and handwriting GPU kernels, resulting in significant performance gains without requiring hardware modifications. Unsloth delivers a 10x speed increase on a single GPU and up to 32x on multi-GPU systems compared to FA2, with compatibility across NVIDIA GPUs from Tesla T4 to H100, and portability to AMD and Intel GPUs.
    Starting Price: Free
  • 9
    Axolotl

    Axolotl

    Axolotl

    ​Axolotl is an open source tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. It enables users to train models, supporting methods like full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Users can customize configurations using simple YAML files or command-line interface overrides, and load different dataset formats, including custom or pre-tokenized datasets. Axolotl integrates with technologies like xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and works with single or multiple GPUs via Fully Sharded Data Parallel (FSDP) or DeepSpeed. It can be run locally or on the cloud using Docker and supports logging results and checkpoints to several platforms. It is designed to make fine-tuning AI models friendly, fast, and fun, without sacrificing functionality or scale.
    Starting Price: Free
  • 10
    LLaMA-Factory

    LLaMA-Factory

    hoshi-hiyouga

    ​LLaMA-Factory is an open source platform designed to streamline and enhance the fine-tuning process of over 100 Large Language Models (LLMs) and Vision-Language Models (VLMs). It supports various fine-tuning techniques, including Low-Rank Adaptation (LoRA), Quantized LoRA (QLoRA), and Prefix-Tuning, allowing users to customize models efficiently. It has demonstrated significant performance improvements; for instance, its LoRA tuning offers up to 3.7 times faster training speeds with better Rouge scores on advertising text generation tasks compared to traditional methods. LLaMA-Factory's architecture is designed for flexibility, supporting a wide range of model architectures and configurations. Users can easily integrate their datasets and utilize the platform's tools to achieve optimized fine-tuning results. Detailed documentation and diverse examples are provided to assist users in navigating the fine-tuning process effectively.
    Starting Price: Free
  • 11
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 12
    Pipeshift

    Pipeshift

    Pipeshift

    Pipeshift is a modular orchestration platform designed to facilitate the building, deployment, and scaling of open source AI components, including embeddings, vector databases, large language models, vision models, and audio models, across any cloud environment or on-premises infrastructure. The platform offers end-to-end orchestration, ensuring seamless integration and management of AI workloads, and is 100% cloud-agnostic, providing flexibility in deployment. With enterprise-grade security, Pipeshift addresses the needs of DevOps and MLOps teams aiming to establish production pipelines in-house, moving beyond experimental API providers that may lack privacy considerations. Key features include an enterprise MLOps console for managing various AI workloads such as fine-tuning, distillation, and deployment; multi-cloud orchestration with built-in auto-scalers, load balancers, and schedulers for AI models; and Kubernetes cluster management.
  • 13
    Cake AI

    Cake AI

    Cake AI

    Cake AI is a comprehensive AI infrastructure platform that enables teams to build and deploy AI applications using hundreds of pre-integrated open source components, offering complete visibility and control. It provides a curated, end-to-end selection of fully managed, best-in-class commercial and open source AI tools, with pre-built integrations across the full breadth of components needed to move an AI application into production. Cake supports dynamic autoscaling, comprehensive security measures including role-based access control and encryption, advanced monitoring, and infrastructure flexibility across various environments, including Kubernetes clusters and cloud services such as AWS. Its data layer equips teams with tools for data ingestion, transformation, and analytics, leveraging tools like Airflow, DBT, Prefect, Metabase, and Superset. For AI operations, Cake integrates with model catalogs like Hugging Face and supports modular workflows using LangChain, LlamaIndex, and more.
  • 14
    Tune AI

    Tune AI

    NimbleBox

    Leverage the power of custom models to build your competitive advantage. With our enterprise Gen AI stack, go beyond your imagination and offload manual tasks to powerful assistants instantly – the sky is the limit. For enterprises where data security is paramount, fine-tune and deploy generative AI models on your own cloud, securely.
  • Previous
  • You're on page 1
  • Next