MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Features

  • MLflow Tracking: An API to log parameters, code, and results in machine learning experiments and compare them using an interactive UI.
  • MLflow Projects: A code packaging format for reproducible runs using Conda and Docker, so you can share your ML code with others.
  • MLflow Models: A model packaging format and tools that let you easily deploy the same model (from any ML library) to batch and real-time scoring on platforms such as Docker, Apache Spark, Azure ML and AWS SageMaker.
  • MLflow Model Registry: A centralized model store, set of APIs, and UI, to collaboratively manage the full lifecycle of MLflow Models.

Project Samples

Project Activity

See All Activity >

Categories

Machine Learning

License

Apache License V2.0

Follow MLflow

MLflow Web Site

Other Useful Business Software
Orchestrate Your AI Agents with Zenflow Icon
Orchestrate Your AI Agents with Zenflow

The multi-agent workflow engine for modern teams. Zenflow executes coding, testing, and verification with deep repo awareness

Zenflow orchestrates AI agents like a real engineering system. With parallel execution, spec-driven workflows, and deep multi-repo understanding, agents plan, implement, test, and verify end-to-end. Upgrade to AI workflows that work the way your team does.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of MLflow!

Additional Project Details

Programming Language

JavaScript, Python

Related Categories

Python Machine Learning Software, JavaScript Machine Learning Software

Registered

2023-03-23