Drug name recognition and normalisation/grounding to DrugBank ids and standard names.

Package provides 2 taggers:
1. DrugTagger - CRF-based with DrugBank presence feature (see feature set for details).
2. DrugnameGazetteer - gazetteer/dictionary-based. Dictionary created from DrugBank.ca database.
Both taggers include grounding/normalisation to DrugBank ids and standard names.

Feature set:
Word, Word-1, Word+1, Word-1_Word, Word_Word+1, DrugBankPresence, POS
DrugBankPresence feature indicates the presence of the drug name in the DrugBank.

Using CONLL-Evaluation:
processed 32065 tokens with 3656 phrases; found: 3251 phrases; correct: 2786.
accuracy: 95.25%; precision: 85.70%; recall: 76.20%; FB1: 80.67


Using GATE Corpus Benchmark:
Strict: P: 0.65 R: 0.73 F1: 0.69
Lenient: P: 0.74 R: 0.84 F1: 0.78

The details of how to reproduce evaluation, see README.

To use standalone version for tagging download DrugExtractionStandalone.tar.gz from Files.

Project Samples

Project Activity

See All Activity >

Follow Drug Extraction

Drug Extraction Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Drug Extraction!

Additional Project Details

User Interface

Console/Terminal

Programming Language

Java

Related Categories

Java Bio-Informatics Software, Java Linguistics Software, Java Machine Learning Software

Registered

2015-06-10