CatBoost is a fast, high-performance open source library for gradient boosting on decision trees. It is a machine learning method with plenty of applications, including ranking, classification, regression and other machine learning tasks for Python, R, Java, C++.
CatBoost offers superior performance over other GBDT libraries on many datasets, and has several superb features. It has best in class prediction speed, supports both numerical and categorical features, has a fast and scalable GPU version, and readily comes with visualization tools. CatBoost was developed by Yandex and is used in various areas including search, self-driving cars, personal assistance, weather prediction and more.
Features
- Exceptional prediction speed
- Novel gradient-boosting scheme that improves accuracy
- Fast GPU and multi-GPU support for training
- Supports numerical and categorical features
- Offers great quality results without parameter tuning
- Comes with visualization tools
Categories
Machine LearningLicense
Apache License V2.0Other Useful Business Software
Build on Google Cloud with $300 in Free Credit
Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of CatBoost!