keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. Documentation is available online.

Features

  • Deep Q Learning (DQN)
  • Deep Deterministic Policy Gradient (DDPG)
  • Asynchronous Advantage Actor-Critic (A3C)
  • Documentation available
  • Proximal Policy Optimization Algorithms (PPO)
  • Cross-Entropy Method (CEM)
  • Examples available

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow Deep Reinforcement Learning for Keras

Deep Reinforcement Learning for Keras Web Site

Other Useful Business Software
Build on Google Cloud with $300 in Free Credit Icon
Build on Google Cloud with $300 in Free Credit

New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
Start Free Trial
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Deep Reinforcement Learning for Keras!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Programming Language

Python

Related Categories

Python Machine Learning Software, Python Reinforcement Learning Frameworks, Python Reinforcement Learning Libraries, Python Reinforcement Learning Algorithms

Registered

2024-08-01