Java Reinforcement Learning Libraries

View 27 business solutions

Browse free open source Java Reinforcement Learning Libraries and projects below. Use the toggles on the left to filter open source Java Reinforcement Learning Libraries by OS, license, language, programming language, and project status.

  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 1
    The Free Connectionist Q-learning Java Framework is an library for developing learning systems. Keywords: qlearning, artificial intelligence, alife, neural nets, neural networks, machine learning, reinforcement learning unsupervised learning agents lejos
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Ms. Pac-Man Framework

    Ms. Pac-Man Framework

    Using reinforcement learning with relative input to train Ms. Pac-Man

    This Java-application contains all required components to simulate a game of Ms. Pac-Man and let an agent learn intelligent playing behaviour using reinforcement learning and either Q-Learning or SARSA. The framework was developed by Luuk Bom and Ruud Henken, under supervision of Marco Wiering, Department of Artificial Intelligence, University of Groningen. It formed the basis of a bachelor's thesis titled "Using reinforcement learning with relative input to train Ms. Pac-Man", L.A.M. Bom (2012).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PIQLE is a Platform Implementing Q-LEarning (and other Reinforcement Learning) algorithms in JAVA. Version 2 is a major refactoring. The core data structures and algorithms are in piqle-coreVersion2. Examples are in piqle-examplesVersion2. A complete doc
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Project Malmo

    Project Malmo

    A platform for Artificial Intelligence experimentation on Minecraft

    How can we develop artificial intelligence that learns to make sense of complex environments? That learns from others, including humans, how to interact with the world? That learns transferable skills throughout its existence, and applies them to solve new, challenging problems? Project Malmo sets out to address these core research challenges, addressing them by integrating (deep) reinforcement learning, cognitive science, and many ideas from artificial intelligence. The Malmo platform is a sophisticated AI experimentation platform built on top of Minecraft, and designed to support fundamental research in artificial intelligence. The Project Malmo platform consists of a mod for the Java version, and code that helps artificial intelligence agents sense and act within the Minecraft environment. The two components can run on Windows, Linux, or Mac OS, and researchers can program their agents in any programming language they’re comfortable with.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 5
    RL Poker is a study project Java implementation of an e-soft on-policy Monte Carlo Texas Hold'em poker reinforcement learning algoritm with a feedforward neural network and backpropagation. It provides a graphical interface to monitor game rounds.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    The ultimate Reinforcement Learning Simulator!!!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    The Teachingbox uses advanced machine learning techniques to relieve developers from the programming of hand-crafted sophisticated behaviors of autonomous agents (such as robots, game players etc...) In the current status we have implemented a well founded reinforcement learning core in Java with many popular usecases, environments, policies and learners. Obtaining the teachingbox: FOR USERS: If you want to download the latest releases, please visit: http://search.maven.org/#search|ga|1|teachingbox FOR DEVELOPERS: 1) If you use Apache Maven, just add the following dependency to your pom.xml: <dependency> <groupId>org.sf.teachingbox</groupId> <artifactId>teachingbox-core</artifactId> <version>1.2.3</version> </dependency> 2) If you want to check out the most recent source-code: git clone https://git.code.sf.net/p/teachingbox/core teachingbox-core Documentation: https://sourceforge.net/p/teachingbox/documentation/HEAD/tree/trunk/manual/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    cerrla

    The CERRLA algorithm, developed by Sam Sarjant

    This project contains the files required to run the Cross-Entropy Relational Reinforcement Learning Agent (CERRLA) algorithm. Note that a copy of the JESS rules engine will also be required.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB