Open Source Mobile Operating Systems Object Detection Models

Object Detection Models for Mobile Operating Systems

Browse free open source Object Detection Models and projects for Mobile Operating Systems below. Use the toggles on the left to filter open source Object Detection Models by OS, license, language, programming language, and project status.

  • Stay in Flow. Let Zenflow Handle the Heavy Lifting. Icon
    Stay in Flow. Let Zenflow Handle the Heavy Lifting.

    Your AI engineering control center. Zenflow turns specs into shipped features using parallel agents and multi-repo intelligence.

    Zenflow is your engineering control center, turning specs into shipped features. Parallel agents handle coding, testing, and refactoring with real repo context. Multi-agent workflows remove bottlenecks and automate routine work so developers stay focused and in flow.
    Try free now
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • 1
    YOLOv5

    YOLOv5

    YOLOv5 is the world's most loved vision AI

    Introducing Ultralytics YOLOv8, the latest version of the acclaimed real-time object detection and image segmentation model. YOLOv8 is built on cutting-edge advancements in deep learning and computer vision, offering unparalleled performance in terms of speed and accuracy. Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs. Explore the YOLOv8 Docs, a comprehensive resource designed to help you understand and utilize its features and capabilities. Whether you are a seasoned machine learning practitioner or new to the field, this hub aims to maximize YOLOv8's potential in your projects.
    Downloads: 119 This Week
    Last Update:
    See Project
  • 2
    Simd

    Simd

    High performance image processing library in C++

    The Simd Library is a free open source image processing library, designed for C and C++ programmers. It provides many useful high performance algorithms for image processing such as: pixel format conversion, image scaling and filtration, extraction of statistic information from images, motion detection, object detection (HAAR and LBP classifier cascades) and classification, neural network. The algorithms are optimized with using of different SIMD CPU extensions. In particular the library supports following CPU extensions: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX-512 for x86/x64, VMX(Altivec) and VSX(Power7) for PowerPC, NEON for ARM. The Simd Library has C API and also contains useful C++ classes and functions to facilitate access to C API. The library supports dynamic and static linking, 32-bit and 64-bit Windows, Android and Linux, MSVS, G++ and Clang compilers, MSVS project and CMake build systems.
    Leader badge
    Downloads: 34 This Week
    Last Update:
    See Project
  • 3
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    TNN, a high-performance, lightweight neural network inference framework open sourced by Tencent Youtu Lab. It also has many outstanding advantages such as cross-platform, high performance, model compression, and code tailoring. The TNN framework further strengthens the support and performance optimization of mobile devices on the basis of the original Rapidnet and ncnn frameworks. At the same time, it refers to the high performance and good scalability characteristics of the industry's mainstream open source frameworks, and expands the support for X86 and NV GPUs. On the mobile phone, TNN has been used by many applications such as mobile QQ, weishi, and Pitu. As a basic acceleration framework for Tencent Cloud AI, TNN has provided acceleration support for the implementation of many businesses. Everyone is welcome to participate in the collaborative construction to promote the further improvement of the TNN inference framework.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next