Neural Network Libraries for Linux

View 10 business solutions

Browse free open source Neural Network Libraries and projects for Linux below. Use the toggles on the left to filter open source Neural Network Libraries by OS, license, language, programming language, and project status.

  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, Keras, TensorFlow Lite, Caffe, Darknet, Core ML, MNN, MXNet, ncnn, PaddlePaddle, Caffe2, Barracuda, Tengine, TNN, RKNN, MindSpore Lite, and UFF. Netron has experimental support for TensorFlow, PyTorch, TorchScript, OpenVINO, Torch, Arm NN, BigDL, Chainer, CNTK, Deeplearning4j, MediaPipe, ML.NET, scikit-learn, TensorFlow.js. There is an extense variety of sample model files to download or open using the browser version. It is supported by macOS, Windows, Linux, Python Server and browser.
    Downloads: 77 This Week
    Last Update:
    See Project
  • 2
    Darknet YOLO

    Darknet YOLO

    Real-Time Object Detection for Windows and Linux

    This is YOLO-v3 and v2 for Windows and Linux. YOLO (You only look once) is a state-of-the-art, real-time object detection system of Darknet, an open source neural network framework in C. YOLO is extremely fast and accurate. It uses a single neural network to divide a full image into regions, and then predicts bounding boxes and probabilities for each region. This project is a fork of the original Darknet project.
    Downloads: 68 This Week
    Last Update:
    See Project
  • 3
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 40 This Week
    Last Update:
    See Project
  • 4
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse tensor cores providing an additional performance boost.
    Downloads: 31 This Week
    Last Update:
    See Project
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights. Click to perfect your product now.
    Click to perfect your product now.
  • 5
    TensorFlow.js

    TensorFlow.js

    TensorFlow.js is a library for machine learning in JavaScript

    TensorFlow.js is a library for machine learning in JavaScript. Develop ML models in JavaScript, and use ML directly in the browser or in Node.js. Use off-the-shelf JavaScript models or convert Python TensorFlow models to run in the browser or under Node.js. Retrain pre-existing ML models using your own data. Build and train models directly in JavaScript using flexible and intuitive APIs. Tensors are the core datastructure of TensorFlow.js They are a generalization of vectors and matrices to potentially higher dimensions. Built on top of TensorFlow.js, the ml5.js library provides access to machine learning algorithms and models in the browser with a concise, approachable API. Comfortable with concepts like Tensors, Layers, Optimizers and Loss Functions (or willing to get comfortable with them)? TensorFlow.js provides flexible building blocks for neural network programming in JavaScript.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including Classical CNN (VGG AlexNet GoogleNet Inception), Face Detection (MTCNN RetinaFace), Segmentation (FCN PSPNet UNet YOLACT), and more. ncnn is currently being used in a number of Tencent applications, namely: QQ, Qzone, WeChat, and Pitu.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. It's blazing fast, easy to install and comes with a simple and productive API.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    NN-SVG

    NN-SVG

    Publication-ready NN-architecture schematics

    Illustrations of Neural Network architectures are often time-consuming to produce, and machine learning researchers all too often find themselves constructing these diagrams from scratch by hand. NN-SVG is a tool for creating Neural Network (NN) architecture drawings parametrically rather than manually. It also provides the ability to export those drawings to Scalable Vector Graphics (SVG) files, suitable for inclusion in academic papers or web pages. The tool provides the ability to generate figures of three kinds: classic Fully-Connected Neural Network (FCNN) figures, Convolutional Neural Network (CNN) figures of the sort introduced in the LeNet paper, and Deep Neural Network figures following the style introduced in the AlexNet paper. The former two are accomplished using the D3 javascript library and the latter with the javascript library Three.js. NN-SVG provides the ability to style the figure to the user's liking via many size, color, and layout parameters.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 25 This Week
    Last Update:
    See Project
  • Turn Your Content into Interactive Magic - For Free Icon
    Turn Your Content into Interactive Magic - For Free

    From Canva to Slides, Desmos to YouTube, Lumio works with the tech tools you are already using.

    Transform anything you share into an engaging digital experience - for free. Instantly convert your PDFs, slides, and files into dynamic, interactive sessions with built-in collaboration tools, activities, and real-time assessment. From teaching to training to team building, make every presentation unforgettable. Used by millions for education, business, and professional development.
    Start Free Forever
  • 10
    SponsorBlock

    SponsorBlock

    Skip YouTube video sponsors (browser extension)

    SponsorBlock is an open-source crowdsourced browser extension and open API for skipping sponsor segments in YouTube videos. Users submit when a sponsor happens from the extension, and the extension automatically skips sponsors it knows about using a privacy-preserving query system. It also supports skipping other categories, such as intros, outros, and reminders to subscribe, and skipping to the point with highlights. The extension also features an upvote/downvote system with a weighted random-based distribution algorithm. Once one person submits this information, everyone else with this extension will skip right over the sponsored segment. SponsorBlock is a crowdsourced browser extension that let's anyone submit the start and end time's of sponsored segments of YouTube videos.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of data sources. SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. For production-grade deployment, the Spark Serving project enables high throughput, sub-millisecond latency web services, backed by your Spark cluster.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware accelerators. Quantized inference is significantly faster than floating point inference. For example, models that we’ve run on the Qualcomm® Hexagon™ DSP rather than on the Qualcomm® Kryo™ CPU have resulted in a 5x to 15x speedup. Plus, an 8-bit model also has a 4x smaller memory footprint relative to a 32-bit model. However, often when quantizing a machine learning model (e.g., from 32-bit floating point to an 8-bit fixed point value), the model accuracy is sacrificed.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the new FullyShardedDataParallel (FSDP) wrapper provided by fairscale. Fairseq can be extended through user-supplied plug-ins. Models define the neural network architecture and encapsulate all of the learnable parameters. Criterions compute the loss function given the model outputs and targets. Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Simd

    Simd

    High performance image processing library in C++

    The Simd Library is a free open source image processing library, designed for C and C++ programmers. It provides many useful high performance algorithms for image processing such as: pixel format conversion, image scaling and filtration, extraction of statistic information from images, motion detection, object detection (HAAR and LBP classifier cascades) and classification, neural network. The algorithms are optimized with using of different SIMD CPU extensions. In particular the library supports following CPU extensions: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX-512 for x86/x64, VMX(Altivec) and VSX(Power7) for PowerPC, NEON for ARM. The Simd Library has C API and also contains useful C++ classes and functions to facilitate access to C API. The library supports dynamic and static linking, 32-bit and 64-bit Windows, Android and Linux, MSVS, G++ and Clang compilers, MSVS project and CMake build systems.
    Leader badge
    Downloads: 14 This Week
    Last Update:
    See Project
  • 16
    Fast Artificial Neural Network Library is a free open source neural network library, which implements multilayer artificial neural networks in C with support for both fully connected and sparsely connected networks. Cross-platform execution in both fixed and floating point are supported. It includes a framework for easy handling of training data sets. It is easy to use, versatile, well documented, and fast. Bindings to more than 15 programming languages are available. An easy to read introduction article and a reference manual accompanies the library with examples and recommendations on how to use the library. Several graphical user interfaces are also available for the library.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 17
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    An open-source stack for generative modeling and probabilistic inference. Gen’s inference library gives users building blocks for writing efficient probabilistic inference algorithms that are tailored to their models, while automating the tricky math and the low-level implementation details. Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo. Gen features an easy-to-use modeling language for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used across DeepMind. It preserves Sonnet’s module-based programming model for state management while retaining access to JAX’s function transformations. Haiku can be expected to compose with other libraries and work well with the rest of JAX. Similar to Sonnet modules, Haiku modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to speed up inference and minimize memory footprint has been studied widely. One of the popular techniques for model compression is pruning the weights in convnets, is also known as sparse convolutional networks. Such parameter-space sparsity used for model compression compresses networks that operate on dense tensors and all intermediate activations of these networks are also dense tensors.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices. Predicting stock prices is a complex task, as it is influenced by various factors such as market trends, political events, and economic indicators. The fluctuations in stock prices are driven by the forces of supply and demand, which can be unpredictable at times. To identify patterns and trends in stock prices, deep learning techniques can be used for machine learning. Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is specifically designed for sequence modeling and prediction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared memory in its default configuration. It will likely only work on an RTX 3090, an RTX 2080 Ti, or high-end enterprise GPUs. Lower-end cards must reduce the n_neurons parameter or use the CutlassMLP (better compatibility but slower) instead. tiny-cuda-nn comes with a PyTorch extension that allows using the fast MLPs and input encodings from within a Python context. These bindings can be significantly faster than full Python implementations; in particular for the multiresolution hash encoding.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    brain.js

    brain.js

    GPU accelerated Neural networks in JavaScript for Browsers

    GPU accelerated Neural networks in JavaScript for Browsers and Node.js. brain.js is a GPU accelerated library for Neural Networks written in JavaScript. Brain.js depends on a native module headless-go for GPU support. In most cases installing brain.js from npm should just work. However, if you run into problems, this means prebuilt binaries are not able to download from GitHub repositories and you might need to build it yourself. Brain.js is super simple to use. You do not need to know Neural Networks in detail to work with this. Brain.js performs computations using GPU and gracefully fallback to pure JavaScript when GPU is not available. Brain.js provides multiple neural network implementations as different neural nets can be trained to do different things well. Easily export and import trained models using JSON format or as a function. Host pre-trained models on your website easily.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). Trainer provides a variety of built-in Callback functions to facilitate experiment recording, exception capture, etc. Automatic download of some datasets and pre-trained models.
    Downloads: 1 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.