Open Source Windows Natural Language Processing (NLP) Tools

Natural Language Processing (NLP) Tools for Windows

View 40 business solutions

Browse free open source Natural Language Processing (NLP) tools and projects for Windows below. Use the toggles on the left to filter open source Natural Language Processing (NLP) tools by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 1
    MeCab is a fast and customizable Japanese morphological analyzer. MeCab is designed for generic purpose and applied to variety of NLP tasks, such as Kana-Kanji conversion. MeCab provides parameter estimation functionalities based on CRFs and HMM
    Leader badge
    Downloads: 3,053 This Week
    Last Update:
    See Project
  • 2
    Virastyar

    Virastyar

    Virastyar is an spell checker for low-resource languages

    Virastyar is a free and open-source (FOSS) spell checker. It stands upon the shoulders of many free/libre/open-source (FLOSS) libraries developed for processing low-resource languages, especially Persian and RTL languages Publications: Kashefi, O., Nasri, M., & Kanani, K. (2010). Towards Automatic Persian Spell Checking. SCICT. Kashefi, O., Sharifi, M., & Minaie, B. (2013). A novel string distance metric for ranking Persian respelling suggestions. Natural Language Engineering, 19(2), 259-284. Rasooli, M. S., Kahefi, O., & Minaei-Bidgoli, B. (2011). Effect of adaptive spell checking in Persian. In NLP-KE Contributors: Omid Kashefi Azadeh Zamanifar Masoumeh Mashaiekhi Meisam Pourafzal Reza Refaei Mohammad Hedayati Kamiar Kanani Mehrdad Senobari Sina Iravanin Mohammad Sadegh Rasooli Mohsen Hoseinalizadeh Mitra Nasri Alireza Dehlaghi Fatemeh Ahmadi Neda PourMorteza
    Leader badge
    Downloads: 356 This Week
    Last Update:
    See Project
  • 3
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). Smart caching: never wait for your data to process several times.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. It's blazing fast, easy to install and comes with a simple and productive API.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    Docspell

    Docspell

    Assist in organizing your piles of documents

    Docspell is a personal document organizer. Or sometimes called a "Document Management System" (DMS). You'll need a scanner to convert your papers into files. Docspell can then assist in organizing the resulting mess. It can unify your files from scanners, emails, and other sources. It is targeted for home use, i.e. families, households, and also for smaller groups/companies. You can associate tags, set correspondent,s and lots of other predefined and custom metadata. If your documents are associated with such metadata, you can quickly find them later using the search feature. However adding this manually is a tedious task. Docspell can help by suggesting correspondents, guessing tags or finding dates using machine learning. It can learn metadata from existing documents and find things using NLP. This makes adding metadata to your documents a lot easier. For machine learning, it relies on the free (GPL) Stanford Core NLP library.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    Ciphey

    Ciphey

    Decrypt encryptions without knowing the key or cipher

    Fully automated decryption/decoding/cracking tool using natural language processing & artificial intelligence, along with some common sense. You don't know, you just know it's possibly encrypted. Ciphey will figure it out for you. Ciphey can solve most things in 3 seconds or less. Ciphey aims to be a tool to automate a lot of decryptions & decodings such as multiple base encodings, classical ciphers, hashes or more advanced cryptography. If you don't know much about cryptography, or you want to quickly check the ciphertext before working on it yourself, Ciphey is for you. The technical part. Ciphey uses a custom-built artificial intelligence module (AuSearch) with a Cipher Detection Interface to approximate what something is encrypted with. And then a custom-built, customizable natural language processing Language Checker Interface, which can detect when the given text becomes plaintext.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    Weaviate

    Weaviate

    Weaviate is a cloud-native, modular, real-time vector search engine

    Weaviate in a nutshell: Weaviate is a vector search engine and vector database. Weaviate uses machine learning to vectorize and store data, and to find answers to natural language queries. With Weaviate you can also bring your custom ML models to production scale. Weaviate in detail: Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer-Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), and more. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering with the fault-tolerance of a cloud-native database, all accessible through GraphQL, REST, and various language clients.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    MARF is a general cross-platform framework with a collection of algorithms for audio (voice, speech, and sound) and natural language text analysis and recognition along with sample applications (identification, NLP, etc.) of its use, implemented in Java.
    Downloads: 43 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers unified experience to explore state-of-the-art models spanning across domains such as CV, NLP, Speech, Multi-Modality, and Scientific-computation. Model contributors of different areas can integrate models into the ModelScope ecosystem through the layered APIs, allowing easy and unified access to their models. Once integrated, model inference, fine-tuning, and evaluations can be done with only a few lines of code.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    gse

    gse

    Go efficient multilingual NLP and text segmentation

    Go efficient multilingual NLP and text segmentation; support English, Chinese, Japanese and others. Gse is implements jieba by golang, and try add NLP support and more feature. Support common, search engine, full mode, precise mode and HMM mode multiple word segmentation modes. Support user and embed dictionary, Part-of-speech/POS tagging, analyze segment info, stop and trim words. Support multilingual: English, Chinese, Japanese and others. Support Traditional Chinese. Support HMM cut text use Viterbi algorithm. Support NLP by TensorFlow (in work). Named Entity Recognition (in work). Supports with elastic search and bleve. run JSON RPC service.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    AWS Toolkit for Visual Studio Code

    AWS Toolkit for Visual Studio Code

    Local Lambda debug, CodeWhisperer, SAM/CFN syntax, etc.

    The AWS Toolkit extension for Visual Studio Code enables you to interact with Amazon Web Services (AWS). Try the AWS Code Sample Catalog to start coding with the AWS SDK. The AWS Explorer provides access to the AWS services that you can work with when using the Toolkit. To see the AWS Explorer, choose the AWS icon in the Activity bar. The Developer Tools panel is a section for developer-focused tooling curated for working in an IDE. The Developer Tools panel can be found underneath the AWS Explorer when the AWS icon is selected in the Activity bar. The AWS CDK Explorer enables you to work with AWS Cloud Development Kit (CDK) applications. It shows a top-level view of your CDK applications that have been synthesized in your workspace. Amazon CodeWhisperer provides inline code suggestions using machine learning and natural language processing on the contents of your current file. Supported languages include Java, Python and Javascript.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    HanLP

    HanLP

    Han Language Processing

    HanLP is a multilingual Natural Language Processing (NLP) library composed of a series of models and algorithms. Built on TensorFlow 2.0, it was designed to advance state-of-the-art deep learning techniques and popularize the application of natural language processing in both academia and industry. HanLP is capable of lexical analysis (Chinese word segmentation, part-of-speech tagging, named entity recognition), syntax analysis, text classification, and sentiment analysis. It comes with pretrained models for numerous languages including Chinese and English. It offers efficient performance, clear structure and customizable features, with plenty more amazing features to look forward to on the roadmap.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community, we-media, and online earning community, with a QQ group of more than 10,000 people and at least 10,000 subscribers. The number of Github Stars exceeds 60k, and it ranks in the top 100 of all Github organizations. The daily up of all its websites exceeds 4k, and the peak of Alexa ranking is 20k. Our core members are certified as CSDN blog experts and short-book programmers as excellent authors. We have established ApacheCN, a non-profit document, and tutorial translation project.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    AdalFlow

    AdalFlow

    The library to build & auto-optimize LLM applications

    AdalFlow is a framework for building AI-powered automation workflows, enabling users to design and execute intelligent automation pipelines with minimal coding.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Apache OpenNLP

    Apache OpenNLP

    Apache OpenNLP

    Apache OpenNLP is a machine learning-based NLP library that provides tools for text-processing tasks such as tokenization, sentence segmentation, and named entity recognition.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    BotSharp

    BotSharp

    AI Multi-Agent Framework in .NET

    Conversation as a platform (CaaP) is the future, so it's perfect that we're already offering the whole toolkits to our .NET developers using the BotSharp AI BOT Platform Builder to build a CaaP. It opens up as much learning power as possible for your own robots and precisely control every step of the AI processing pipeline. BotSharp is an open source machine learning framework for AI Bot platform builder. This project involves natural language understanding, computer vision and audio processing technologies, and aims to promote the development and application of intelligent robot assistants in information systems. Out-of-the-box machine learning algorithms allow ordinary programmers to develop artificial intelligence applications faster and easier. It's written in C# running on .Net Core that is full cross-platform framework. C# is a enterprise-grade programming language which is widely used to code business logic in information management-related system.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Botkit

    Botkit

    Tool for building chat bots, apps and custom integrations

    An open source developer tool for building chat bots, apps and custom integrations for major messaging platforms. Part of the Microsoft Bot Framework. We love bots, and want to make them easy and fun to build! Include Botkit into your Node application and boot up a controller that will define your bot's behaviors. In this case, we're setting up a bot to use with the Bot Framework Emulator. Tell the bot to listen for users saying "hello," and use `bot.reply` to send an immediate response. Start a conversation, then queue up multiple messages to send, including a prompt sent using `convo.ask()` which allows your bot to capture user input and use it. Botkit is just one part of a bigger set of developer tools and SDKs that encompass the Microsoft Bot Framework. The Bot Framework SDK provides the base upon which Botkit is built. It is available in multiple programming languages!
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    DataProfiler

    DataProfiler

    Extract schema, statistics and entities from datasets

    DataProfiler is an AI-powered tool for automatic data analysis and profiling, designed to detect patterns, anomalies, and schema inconsistencies in structured and unstructured datasets. The DataProfiler is a Python library designed to make data analysis, monitoring, and sensitive data detection easy. Loading Data with a single command, the library automatically formats & loads files into a DataFrame. Profiling the Data, the library identifies the schema, statistics, entities (PII / NPI), and more. Data Profiles can then be used in downstream applications or reports.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    PaperAI

    PaperAI

    Semantic search and workflows for medical/scientific papers

    PaperAI is an open-source framework for searching and analyzing scientific papers, particularly useful for researchers looking to extract insights from large-scale document collections.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    STORM

    STORM

    An LLM-powered knowledge curation system that researches topics

    STORM is an open-source virtual assistant framework developed by Stanford's OVAL lab. It is designed for creating natural language interfaces and assistants that can interact with APIs, databases, and services in a modular way.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.